scholarly journals The performance of surface barrier discharge in magnetic field driven by half bridge series resonance converter

Author(s):  
Fri Murdiya ◽  
Febrizal Febrizal ◽  
Amun Amri

This paper reports an application of a series resonance converter as a high voltage generator to drive a surface barrier discharge with a magnetic field. The high voltage was about 5 kV with the frequency of 25 kHz. It was connected to circular aluminum plates as the anode electrode and a rectangular aluminum plate as the cathode electrode. These electrodes were separated by a glass dielectric as the barrier. The experiment result indicated that the discharge current with magnetic field was lower than without magnetic field. The plasma on the surface barrier with magnetic field was more luminous than without magnetic field. It also indicated that the area of Lissajous diagram for the surface barrier discharge with magnetic field was slightly decreased than without magnetic field. It could be concluded that the magnetic field affects the plasma progress on the surface barrier. Molecular dynamic (MD) could be used in understanding the ionization process of air molecules. The ionization energies for CO2, N2, and O2 were 0.0502 kcal/mol, 0.0526 kcal/mol and 0.430 kcal/mol, respectively in 1,000 seconds. The highest ionization energy was O2.

10.14311/1731 ◽  
2013 ◽  
Vol 53 (2) ◽  
Author(s):  
Jan Cech ◽  
Jana Hanusova ◽  
Pavel Stahel ◽  
Pavel Slavicek

We studied statistical behavior of microdischarges of diffuse coplanar surface barrier discharge (DCSBD) operated in nitrogen atmosphere at two input voltage regimes. We measured spectrally unresolved discharge patterns together with discharge electrical parameters using highspeed iCCD camera and digital storage oscilloscope. External synchronization enabled us to measure the discharge pattern during positive and/or negative half-period of input high voltage in the single-shotmode of operation. The comparison of microdischarges behavior during positive, negative and both half periods of input high voltage was performed for two levels of input voltage, i.e. voltage slightly above ignition voltage and high above ignition voltage (“overvoltage”). The number of microchannels crossing discharge gap was counted and compared with number of microdischarge current peaks observed during corresponding half-period of input high voltage. The relations of those incidences was shown and discussed.


2016 ◽  
Vol 75 (2) ◽  
pp. 24705 ◽  
Author(s):  
Maxim Malashin ◽  
Igor Rebrov ◽  
Sergey Nebogatkin ◽  
Marina Sokolova ◽  
Alexey Nikitin ◽  
...  

2016 ◽  
Vol 2016 (4) ◽  
pp. 5-7
Author(s):  
V.Yu. Rozov ◽  
◽  
P.N. Dobrodeyev ◽  
A.V. Erisov ◽  
A.O. Tkachenko ◽  
...  

Jurnal Teknik ◽  
2018 ◽  
Vol 7 (1) ◽  
Author(s):  
Mauludi Manfaluthy

WHO (World Health Organization) concludes that not much effect is caused by electric field up to 20 kV / m in humans. WHO standard also mentions that humans will not be affected by the magnetic field under  100 micro tesla and that the electric field will affect the human body with a maximum standard of 5,000 volts per meter. In this study did not discuss about the effect of high voltage radiation SUTT (High Voltage Air Channel) with human health. The research will focus on energy utilization of SUTT radiation. The combination of electric field and magnetic field on SUTT (70-150KV) can generate electromagnetic (EM) and radiation waves, which are expected to be converted to turn on street lights around the location of high voltage areas or into other forms. The design of this prototype works like an antenna in general that captures electromagnetic signals and converts them into AC waves. With a capacitor that can store the potential energy of AC and Schottky diode waves created specifically for low frequency waves, make the current into one direction (DC). From the research results obtained the current generated from the radiation is very small even though the voltage is big enough.Keywords : Radiance Energy, Joule Thief, and  LED Module.


2021 ◽  
Vol 1787 (1) ◽  
pp. 012064
Author(s):  
S V Gundareva ◽  
A V Lazukin ◽  
N V Dorofeev ◽  
A G Romanov ◽  
S A Krivov

2016 ◽  
Vol 44 (12) ◽  
pp. 3071-3076 ◽  
Author(s):  
Fumiaki Mitsugi ◽  
Tomoya Abiru ◽  
Tomoaki Ikegami ◽  
Kenji Ebihara ◽  
Shin-Ichi Aoqui ◽  
...  

Cellulose ◽  
2021 ◽  
Author(s):  
Sebastian Dahle ◽  
Megi Pilko ◽  
Jure Žigon ◽  
Rok Zaplotnik ◽  
Marko Petrič ◽  
...  

AbstractThe development of a simple surface barrier discharge plasma device is presented to enable more widespread access to and utilization of plasma technology. The application of the plasma device was demonstrated for pretreatment of wood prior to application of protective coatings for outdoor usage. The coatings' overall performance was increased, showing a reduction or absence of cracking due to weathering on plasma-pretreated specimens. Moreover, after ten months of outdoor weathering, the plasma-pretreated specimens showed fewer infections with biotic factors and improved adhesion performance in cross-cut tests, while the surface gloss performed independently from plasma pretreatment. In contrast to that, plasma-pretreated specimens were slightly more prone to discoloration due to outdoor weathering, whereas the plasma pretreatment did not impact the initial color after coating application. Graphic abstract


2014 ◽  
Vol 54 (6) ◽  
pp. 383-388 ◽  
Author(s):  
Jan Čech ◽  
Miroslav Zemánek ◽  
Pavel Sťahel ◽  
Hana Dvořáková ◽  
Mirko Černák

In presented work the influence of dielectric barrier thickness on the parameters of Diffuse Coplanar Surface Barrier Discharge was investigated. The discharge was operated at atmospheric pressure laboratory air. The electrical parameters of the system were studied both experimentally and using numerical simulations. The discharge pattern was studied as well using intensified CCD camera.


Sign in / Sign up

Export Citation Format

Share Document