scholarly journals Identification and Characterization of Bacterial Lipase from Plateu Soil in West Java

2017 ◽  
Vol 18 (02) ◽  
pp. 103-108
Author(s):  
Vivitri Dewi Prasasty ◽  
Vinella Winata ◽  
Muhammad Hanafi

Lipases are known as glycerol ester hydrolases that catalyze the hydrolysis of triglycerides into free fatty acids and glycerol. Lipases are found in human, animal, plant, and microorganisms. The aim of this research is to identify lipase producers and characterize bacterial lipase from West Java plateau soil. Plateau soil bacteria samples were isolated on lipase screening medium containing Rhodamine B. Olive oil was used as a substrate in screening and production medium bacterial lipases. From 16 bacterial isolate of lipase producers, 14 were identified as Bacillus sp. and the others were identified as Pseudomonas alcaligenes. All isolates were taken into production step to determine their lipase activities. Moreover, top 3 lipase activities out of 16 lipase activities were chosen to find the optimum pH and temperature. Both characterizations showed pH optimum and temperature optimum from each lipase. These optimum condition were used in heat stability characterization for each lipase samples. The result showed that lipase from isolate COK 2 in optimum pH 4 and temperature 50oC was the most stable lipase due to this sample has good and stable activity for 1 to 5 hours incubation time. Lipase sample from isolate COK 2 has good efficiency for lipase productivity in acid condition and high temperature. Results of this investigation could encourage utilization of these activity enhancers for various industrial applications.

1999 ◽  
Vol 30 (3) ◽  
pp. 265-271 ◽  
Author(s):  
Rubens Cruz ◽  
Vinícius D'Arcádia Cruz ◽  
Juliana Gisele Belote ◽  
Marcelo de Oliveira Khenayfes ◽  
Claudia Dorta ◽  
...  

<FONT FACE="Symbol">b</font>-Galactosidase or <FONT FACE="Symbol">b</font>-D-galactoside-galactohydrolase (EC. 3.2.1.23) is an important enzyme industrially used for the hydrolysis of lactose from milk and milk whey for several applications. Lately, the importance of this enzyme was enhanced by its galactosyltransferase activity, which is responsible for the synthesis of transgalactosylated oligosaccharides (TOS) that act as functional foods, with several beneficial effects on consumers. Penicillium simplicissimum, a strain isolated from soil, when grown in semi-solid medium showed good productivity of <FONT FACE="Symbol">b</font>-galactosidase with galactosyltransferase activity. The optimum pH for hydrolysis was in the 4.04.6 range and the optimum pH for galactosyltransferase activity was in the 6.07.0 range. The optimum temperature for hydrolysis and transferase activity was 55-60°C and 50°C, respectively, and the enzyme showed high thermostability for the hydrolytic activity. The enzyme showed a potential for several industrial applications such as removal of 67% of the lactose from milk and 84% of the lactose from milk whey when incubated at their original pH (4.5 and 6.34, respectively) under optimum temperature conditions. When incubated with a 40% lactose solution in 150 mM McIlvaine buffer, pH 4.5, at 55°C the enzyme converted 86.5% of the lactose to its component monosaccharides. When incubated with a 60% lactose solution in the same buffer but at pH 6.5 and 50°C, the enzyme can synthetize up to 30.5% TOS, with 39.5% lactose and 30% monosaccharides remaining in the preparation.


1956 ◽  
Vol 34 (5) ◽  
pp. 967-980 ◽  
Author(s):  
Morris Kates

Studies of the influence of structural variation in the glycerolphosphatide molecule on the hydrolysis of this class of compounds by plastid phosphatidase C showed that the presence of both fatty acid ester groups is necessary for enzymatic reaction; that release of nitrogenous bases occurred, in the presence of ethyl ether, from phosphatidyl cholines, phosphatidyl ethanolamine, and phosphatidyl serine; and that a phosphatidyl choline was hydrolyzed more rapidly than the corresponding phosphatidyl ethanolamine or phosphatidyl serine. The rate of hydrolysis of phosphatidyl choline was influenced greatly by the chain length and degree of unsaturation of the fatty acids. The corresponding phosphatidic acid formed in the hydrolysis of (dipalmitoyl)- or (dipalmitoleyl)-lecithin by carrot phosphatidase C was isolated. Studies on the hydrolysis of crude soybean phosphatide by phosphatidase C showed that both choline and ethanolamine were liberated in the absence of ethyl ether, at an optimum pH of 4.8; in the presence of ether, the rate of liberation of each base was increased, and the pH optimum was between 4.8 and 6. Soybean phosphatide probably contains a substance that stimulates the enzymatic hydrolysis.


1956 ◽  
Vol 34 (1) ◽  
pp. 967-980 ◽  
Author(s):  
Morris Kates

Studies of the influence of structural variation in the glycerolphosphatide molecule on the hydrolysis of this class of compounds by plastid phosphatidase C showed that the presence of both fatty acid ester groups is necessary for enzymatic reaction; that release of nitrogenous bases occurred, in the presence of ethyl ether, from phosphatidyl cholines, phosphatidyl ethanolamine, and phosphatidyl serine; and that a phosphatidyl choline was hydrolyzed more rapidly than the corresponding phosphatidyl ethanolamine or phosphatidyl serine. The rate of hydrolysis of phosphatidyl choline was influenced greatly by the chain length and degree of unsaturation of the fatty acids. The corresponding phosphatidic acid formed in the hydrolysis of (dipalmitoyl)- or (dipalmitoleyl)-lecithin by carrot phosphatidase C was isolated. Studies on the hydrolysis of crude soybean phosphatide by phosphatidase C showed that both choline and ethanolamine were liberated in the absence of ethyl ether, at an optimum pH of 4.8; in the presence of ether, the rate of liberation of each base was increased, and the pH optimum was between 4.8 and 6. Soybean phosphatide probably contains a substance that stimulates the enzymatic hydrolysis.


1988 ◽  
Vol 43 (11-12) ◽  
pp. 827-834 ◽  
Author(s):  
Yüko Yamashita ◽  
Hiroshi Ashihara

Abstract Two different hexose-phosphorylating enzymes, hexokinase and fructokinase, were partially purified from suspension-cultured Catharanthus roseus cells. One of the enzymes, hexokinase, catalyzed the phosphorylation of both glucose and fructose. The Km values for glucose and fructose were 0.06 mM and 0.23 mM, respectively. The Vmax of the enzyme with fructose was approximately three times higher than with glucose. This enzyme was specific in its requirement for ATP and its Km value for ATP was 52 μM. The optimum pH was 8.0 and Mg2+ or Mn2+ was required for the activity. The activity was inhibited by considerably higher concentrations of ADP (i.e., 4 mM ADP was required for 50% inhibition). The second enzyme, fructokinase, was specific for fructose, and no activity was detected with glucose as substrate. This enzyme used UTP or CTP as phosphate donor. The Km values of this enzyme for fructose and UTP were 0.13 mM and 0.15 mM, respectively. The pH optimum was 7.2, and Mg2+ or Mn2+ was required for the activity. These divalent cations could be partially replaced by Ca2+. The activity was inhibited noncompetitively by ADP and AMP. 90% inhibition of the activity by 0.5 mM ADP was observed in the presence of 2 mM UTP and 5 mM MgCl2. Fructose-2,6-bisphosphate, glucose-1,6-bisphosphate, glucose-6-phosphate, and fructose-6-phosphate had little or no effect on the activity of both the hexokinase and the fructokinase. Based on these results, a discussion is presented of the role of hexokinase and fructokinase and their involvement in the regulation of the metabolism of sugars in Catharanthus cells.


2019 ◽  
Vol 12 (1) ◽  
pp. 58
Author(s):  
Sartika Danial ◽  
Hasnah Natsir ◽  
Seniwati Dali ◽  
Leliani Leliani

Collagenases are enzyme that are able to hydrolyze native collagen into fragment collagen peptides. Collagenases and its hydrolysis products have received tremendous attention in medical and industrial applications. The present study was conducted to isolate and identify new collagenase producing bacteria from fish liquid waste, then produce and characterize collagenase. A total of 7 isolate from fish liquid waste were screened on selective medium containg 2 % collagen and its activity was confirmed by the formation of clear zone. Isolat 6-2 was positif as collagenase producer and identified as Bacillus sp. 6-2 by morphological and biochemical characteristics. The optimum fermentation time of enzyme was investigated. Collagenase crude extract was characterized by the effect of pH, temperature, and metal ions. Isolat 62 optimally produced collagenase enzyme after 30 h of incubation with activity of   0.072 U/mL and protein content of 3.768 mg/mL. The optimum pH and temperature were 7.0 and 40 oC, respectively. The enzyme was activated by 1 mM Ca2+and  Mg2+, and inhibited by   1 mM  Zn2+ and Co2+. Collagenase from Bacillus sp. 6-2 may have potentials for medical and industrial applications.


2016 ◽  
Vol 2016 ◽  
pp. 1-8 ◽  
Author(s):  
Folasade M. Olajuyigbe ◽  
Chidinma M. Nlekerem ◽  
Olusola A. Ogunyewo

Production ofβ-glucosidase fromFusarium oxysporumwas investigated during degradation of some cellulosic substrates (Avicel,α-cellulose, carboxymethyl cellulose (CMC), and methylcellulose). Optimized production ofβ-glucosidase using the cellulosic substrate that supported highest yield of enzyme was examined over 192 h fermentation period and varied pH of 3.0–11.0. Theβ-glucosidase produced was characterized for its suitability for industrial application. Methyl cellulose supported the highest yield ofβ-glucosidase (177.5 U/mg) at pH 6.0 and 30°C at 96 h of fermentation with liberation of 2.121 μmol/mL glucose. The crude enzyme had optimum activity at pH 5.0 and 70°C. The enzyme was stable over broad pH range of 4.0–7.0 with relative residual activity above 60% after 180 min of incubation.β-glucosidase demonstrated high thermostability with 83% of its original activity retained at 70°C after 180 min of incubation. The activity ofβ-glucosidase was enhanced by Mn2+and Fe2+with relative activities of 167.67% and 205.56%, respectively, at 5 mM and 360% and 315%, respectively, at 10 mM. The properties shown byβ-glucosidase suggest suitability of the enzyme for industrial applications in the improvement of hydrolysis of cellulosic compounds into fermentable sugars that can be used in energy generation and biofuel production.


2011 ◽  
Vol 83 (2) ◽  
pp. 599-609 ◽  
Author(s):  
Amanda R. Sena ◽  
Gildomar L.V. Júnior ◽  
Aristóteles Góes Neto ◽  
Alex G. Taranto ◽  
Carlos P. Pirovani ◽  
...  

The enzyme glucanase from Moniliophthora perniciosa was produced in liquid medium and purified from the culture supernatant. A multivariate statistical approach (Response Surface Methodology - RSM) was employed to evaluate the effect of variables, including inducer (yeast extract) and fermentation time, on secreted glucanase activities M. perniciosa detected in the culture medium. The crude enzyme present in the supernatant was purified in two steps: precipitation with ammonium sulfate (70%) and gel filtration chromatography on Sephacryl S-200. The best inducer and fermentation time for glucanase activities were 5.9 g L-1 and 13 days, respectively. The results revealed three different isoforms (GLUI, GLUII and GLUIII) with purification factors of 4.33, 1.86 and 3.03, respectively. The partially purified enzymatic extract showed an optimum pH of 5.0 and an optimum temperature of 40°C. The enzymatic activity increased in the presence of KCl at all concentrations studied. The glucanase activity was highest in the presence of 0.2 M NaCl. The enzyme showed high thermal stability, losing only 10.20% of its specific activity after 40 minutes of incubation at 90°C. A purified enzyme with relatively good thermostability that is stable at low pH might be used in future industrial applications.


1996 ◽  
Vol 316 (3) ◽  
pp. 841-846 ◽  
Author(s):  
Stuart M. PITSON ◽  
Robert J. SEVIOUR ◽  
Barbara M. McDOUGALL ◽  
Bruce A. STONE ◽  
Maruse SADEK

An endo-(1 → 6)-β-glucanase has been isolated from the culture filtrates of the filamentous fungus Acremonium persicinum and purified by (NH4)2SO4 precipitation followed by anion-exchange and gel-filtration chromatography. SDS/PAGE of the purified enzyme gave a single band with an apparent molecular mass of 42.7 kDa. The enzyme is a non-glycosylated, monomeric protein with a pI of 4.9 and pH optimum of 5.0. It hydrolysed (1 → 6)-β-glucans (pustulan and lutean), initially yielding a series of (1 → 6)-β-linked oligoglucosides, consistent with endo-hydrolytic action. Final hydrolysis products from these substrates were gentiobiose and gentiotriose, with all products released as β-anomers, indicating that the enzyme acts with retention of configuration. The purified enzyme also hydrolysed Eisenia bicyclis laminarin, liberating glucose, gentiobiose, and a range of larger oligoglucosides, through the apparent hydrolysis of (1 → 6)-β- and some (1 → 3)-β-linkages in this substrate. Km values for pustulan, lutean and laminarin were 1.28, 1.38, and 1.67 mg/ml respectively. The enzyme was inhibited by N-acetylimidazole, N-bromosuccinimide, dicyclohexylcarbodi-imide, Woodward's Regent K, 2-hydroxy-5-nitrobenzyl bromide, KMnO4 and some metal ions, whereas D-glucono-1,5-lactone and EDTA had no effect.


1987 ◽  
Vol 42 (4) ◽  
pp. 333-342 ◽  
Author(s):  
Leo Polz ◽  
Helmut Schübel ◽  
Joachim Stoekigt

A novel enzyme was isolated, partially purified (217-fold) and characterized from cell suspen­sion cultures of Rauwolfia serpentina Benth. The enzyme catalyzes one of the late biochemical reactions in the biosynthesis of ajmaline by hydrolysis of 17-O-acetylated alkaloids of the ajmalan group forming the appropriate deacetylated compounds. This esterase exhibits an unusually high substrate selectivity and exclusively accepts acetylated ajmaline derivatives with the naturally occurring 2β(R)-configuration. The properties of the enzyme were determined showing an optimum pH at 7.5, an isoelectric point of pH 4.9 and a relative molecular weight of 33 ± 2 kDa. Inhibition studies of enzyme activity point to the necessity of SH-groups. The esterase seems not to be inhibited by ajmaline. the end product of the pathway. The highest enzyme activities were observed in leaves and cell suspension tissues of the tribe Rauwolfieae which are known to synthe­size ajmaline and its congeners. The specific function of the esterase in the biosynthesis of the later alkaloids was established.


1982 ◽  
Vol 47 (4) ◽  
pp. 1139-1148 ◽  
Author(s):  
Karel Hauzer ◽  
Linda Servítová ◽  
Tomislav Barth ◽  
Karel Jošt

Post-proline endopeptidase was isolated from pig kidneys and partially purified. The procedure consisted of fractionation with ammonium sulphate, ion exchange chromatography on DEAE-Sephadex A-50, gel filtration on Sephadex G-200 and rechromatography on DEAE-Sephadex A-50. The preparation had 55 times higher specific activity than the crude extract and did not contain any contaminating enzymic activities. The enzyme cleaved a number of proline-containing peptides and was strictly specific in catalyzing the hydrolysis of the peptide bond on the carboxyl side of the proline residue. The optimum pH for the hydrolysis of the synthetic peptides benzyl-oxycarbonylglycyl-prolyl-leucyl-glycinamide and benzyloxycarbonyl-glycyl-proline β-naphtylamide was 7.8-8.0 and, in the case of benzyloxycarbonylglycyl-proline p-nitroanilide, 7.2 to 7.5. For the hydrolysis of the tetrapeptide benzyloxycarbonylglycyl-prolyl-leucyl-glycinamide, the Km value of 75 μ mol l-1 was obtained.


Sign in / Sign up

Export Citation Format

Share Document