scholarly journals TREE SPECIES DIVERSITY IN THE LOWLAND FOREST OF THE CORE ZONE OF THE BUKIT DUABELAS NATIONAL PARK, JAMBI, INDONESIA

REINWARDTIA ◽  
2016 ◽  
Vol 15 (1) ◽  
pp. 11
Author(s):  
RAHMAH RAHMAH ◽  
KUSWATA KARTAWINATA ◽  
NISYAWATI NISYAWATI ◽  
WISNU WARDHANA ◽  
ERWIN NURDIN

RAHMAH, KARTAWINATA, K., NISYAWATI, WARDHANA, W. & NURDIN, E. 2016. Tree species diversity in the lowland forest of the core zone of the Bukit Duabelas National Park, Jambi, Indonesia. Reinwardtia 15(1): 11 - 26. — An analysis of the composition and structure of a one-hectare plot of forest on a lowland hill slope in the eastern core zone of the Bukit Duabelas National Park, Jambi, was conducted in October and November 2012. The objective of the study was to obtain a descriptive account of the structure and tree species composition of a lowland forest in the eastern core zone of the park. The plot was divided into 100 subplots of  (10 m × 10 m) each and the seedling subplots (5 m × 5 m) were nested in the sapling subplots. A total of 414 trees were recorded with DBH (Diameter at Breast Height) ?10 cm, representing 113 species and 38 families, with the total BA (Basal Area)  of 25.71 m2 and Shannon- Wiener diversity index of 4.29. Prunus arborea with IV (Importance Value) of 19.19 is the dominant species and the other prevalent species were, Dracontomelon dao (IV =11.46) and Hydnocarpus sp. (IV =11.38). A total of 44 species (38.9%) had each density of 1 tree/ha, which may be considered locally rare. Ficus fistulosa had the highest density (24 trees/ha) and Prunus arborea had the highest BA (3.28 m2 = 12.8% of the total). Only 10 species had F (frequency) of 8-18%, of which Hydnocarpus sp. had the highest (18%); the remaining species had F<8%, which may be considered locally rare. Moraceae (IV= 34.05) was the dominant family. The two richest families were Moraceae (11) and Clusiaceae (9). A total of 61 species were registered in the Sumatra checklist and one of them was endemic (Baccaurea dulcis). A total of 13 species are listed in the IUCN Red List. The forest is a developing community after disturbance in the past with poor regeneration. Species with complete representation of trees, saplings and seedlings will probably remain in the forest in the future.

2021 ◽  
Vol 25 (8) ◽  
pp. 1415-1419
Author(s):  
O.M. Ogundele ◽  
P.O. Ige ◽  
Y.T. Owoeye ◽  
D.E. Abanikanda ◽  
O.O. Komolafe

This study was carried out to examine the tree species diversity and abundance in a natural forest ecosystem in the Southwestern region of Nigeria. Data were collected from a four equal size sampling plot of 50×50m in a permanent sample plot section of Akure Forest Reserve. All living trees with DBH ≥ 10cm were measured and identified. A total of 956 trees were encountered. These trees were from 42 genera and 20 families. Celtis zenkeri belonging to the family of Ulmaceae was the species with the highest population distribution while Sterculiaceae was the dominant family in the study area. The Shannon-Wiener Diversity Index (Hˈ) of 3.196 and species evenness of 0.84 were obtained from the study area. The high values of diversity indices obtained indicated that the forest is rich in biodiversity and hence should be protected from any forms of disturbance to enhance sustainability as well as protect the rare species in it from going into extinction.


2020 ◽  
Vol 5 (1) ◽  
Author(s):  
Saddam Hossen ◽  
Mohammed Kamal Hossain ◽  
Md. Akhter Hossain ◽  
Mohammad Fahim Uddin

Abstract. Hossen S, Hossain MK, Hossain MA, Uddin MF. 2020. Quantitative assessment of tree species diversity of Himchari National Park (HNP) in Cox’s Bazar, Bangladesh. Asian J For 5: 1-7. The aim of the study was to assess the tree species composition, dominance, and quantitative distribution of tree species of Himchari National Park, Cox’s Bazar in Bangladesh through stratified random sampling method using sample plots (51) of 20 m x 20 m in size during the period of January 2017 to May 2018. A total of 961 stems (dbh ≥ 5 cm) of 88 tree species belonging to 64 genera and 37 families were enumerated where the stem density and basal area were 457.39 stem ha-1 and 10.979 m2 ha-1 respectively. On the other hand, the species diversity index, Shannon-Wiener’s diversity index, Shannon’s maximum diversity index, species evenness index, Margalef’s diversity index, and Simpson’s diversity index were 0.092, 3.733 ± 0.0071, 4.477, 0.834, 12.667 and 0.039 ± 0.0003 respectively. The highest Importance Value Index (IVI) was found for Acacia auriculiformis (23.23) followed by Tectona grandis (13.05), Gmelina arborea (12.66), Syzygium fruticosum (12.34), Casuarina equisetifolia (10.57), and Dipterocarpus turbinatus (10.55). The IVI value represents that Acacia auriculiformis possess highest dominance that is followed by Tectona grandis and Gmelina arborea. Percentage distribution of tree individuals into different height classes found in quadrats showed that height range 3 - <8 m had the highest (59.83%) percentage of tree individuals. On the other hand, different dbh (having dbh ≥5 cm) classes showed that most of the trees (65.97%) belonged to dbh range 5 - <15 cm. The outcome of present study suggests for the protection, sustainable management, and conservation of the tree resources of HNP, Cox’s Bazar, Bangladesh.


2017 ◽  
Vol 11 (2) ◽  

Cavite has remaining secondary lowland forest fragments that are believed to be either remnant from commercial logging activities ca. 25-45 years ago or as a direct result of land conversions for agriculture or human settlements. There have been no vegetation studies among these forest fragments except in Mt. Palay-Palay in 2004. The aim of the research was to describe these remaining forest fragments (in addition to Mt. Palay-Palay), their tree species diversity, composition, ecological assessment and current anthropogenic threats affecting these areas. Vegetation analysis was performed using the Point-Centered Quarter Method (PCQM) in 72 100-m transects in forest fragments with different habitats. Species diversity was computed using Shannon’s diversity index (H′). A total of 2,853 tree individuals belonging to 50 families, 127 genera, and 174 species was encountered. Species diversity indices (H′) in all forest fragments were high and their importance value indices (IVIs) fall within the range of IVIs of tropical forest inventories. Assessment of ecological status revealed that of the 174 species, 44 (25.3%) are endemic, 114 (65.5%) are native/indigenous, and 16 (9.2%) are exotic/introduced. Thirty-nine angiosperms are threatened representing 8.9% of all threatened angiosperms in the Philippines. Overall, Cavite’s remaining forest fragments are diverse in terms of tree species and all experience anthropogenic threats and it is highly recommended that they be protected and conserved including the diverse fauna and flora associated with these areas.


2020 ◽  
Vol 21 (7) ◽  
Author(s):  
ARIDA SUSILOWATI ◽  
DENI ELFIATI ◽  
HENTI HENDALSTUTI RACHMAT ◽  
KUSUMADEWI SRI YULITA ◽  
ADI NURUL HADI ◽  
...  

Abstract. Susilowati A, Elfiati D, Rachmat HH, Yulita KS, Hadi AN, Kusuma YS, Batu SAL. 2020. Vegetation structure and floristic composition of tree species in the habitat of Scaphium macropodum in Gunung Leuser National Park, Sumatra, Indonesia. Biodiversitas 21: 3025-3033. Scaphium macropodum (Miq.) Beumee Ex K Heyne is a member of Malvaceae tree species and globally recognized as malva nut and locally known as ‘kembang semangkok’, ‘tempayang’, ‘merpayang’ or ‘kepayang’. The nut of S. macropodum has many benefits for medicinal purposes, yet destructive extraction of this tree species has led them to extinction. Among its natural distribution in Indonesia, North Sumatra Province, Indonesia is known as its original range, but there is limited information about the existence of this species. This study aimed to determine the vegetation structure of some tree species in the habitat of S. macropodum in Sikundur, Gunung Leuser National Park, Sumatra, Indonesia. Purposive sampling technique was employed by creating line transect at some forest areas where the population of S. macropodum is known to grow naturally. Four line transects with each transect consisting of five plots with nested plots within were established to record data at four growth stages, resulting in 80 plots in total. The results showed that the Important Value Index (IVI) of S. macropodum within the floristic community at the studied area was 21.98, 13.85, 27.30, and 39.60 for tree, pole, sapling, and seedlings stages, respectively. The Shannon-Wiener Diversity Index (H) were 3.80, 3.70, 3.06 and 2.45, Index of evenness (E) are 0.94, 0.92, 0.86, 0.77 and the Index of Richness (R) are 11.76, 10.73, 6.59, 4.10 for tree, pole, sapling, and seedlings stages. This result suggests that the natural population of S. macropodum in Sikundur forest was still in good condition at all stages from tree to seedling.


REINWARDTIA ◽  
2018 ◽  
Vol 17 (2) ◽  
Author(s):  
Asep Sadili ◽  
Kuswata Kartawinata ◽  
Herwasono Soedjito ◽  
Edy Nasriadi Sambas

ADILI, A., KARTAWINATA, K., SOEDJITO, H. & SAMBAS, E. N. 2018. Tree species diversity in a pristine montane forest previously untouched by human activities in Foja Mountains, Papua, Indonesia. Reinwardtia 17(2): 133‒154. ‒‒ A study on structure and composition of the pristine montane forest previously untouched by human activities was conducted at the Foja Mountains in November 2008. We established a one-hectare plot divided into 100 subplots of 10 m × 10 m each. We enumerated all trees with DBH ≥ 10 cm which diameters were measured, heights were estimated and habitats were noted. We recorded 59 species, 42 genera and 27 families, comprising 693 trees with the total basal area (BA) of 41.35 m2/ha. The forest had lower species richness compared to those of lowland forests in Kalimantan, and Sumatra and montane forests in West Java. The Shannon-Wiener’s diversity index was 3.22. Nothofagus rubra (Importance Value, IV=47.89%) and Parinari corymbosa (IV=40.3%) were the dominant species, constituting the basis for designating the forest as the Nothofagus rubra - Parinari corymbosa association. To date, the dominance of N. rubra is unique to the Foja Mountains, as elsewhere in Papua the montane forests were dominated by N. pullei or other species. The species-area curve indicated a minimal area of 5000 m2. On the family level Fagaceae (IV=53.23%), Chrysobalanaceae (IV=40.53%) and Myristicaceae (IV=26.43%) were dominant. Verti-cally the forest consisted of four strata (A–D). In each stratum Nothofagus rubra, Platea latifolia, Parinari corymbosa and Myristica hollrungii were dominant. The diameter class distribution of Nothofagus rubra, Parinari corymbosa and Platea latifolia led us to assume that these species were regenerating well.


2020 ◽  
Vol 5 (2) ◽  
pp. 115-126 ◽  
Author(s):  
M Jannat ◽  
M Kamruzzaman ◽  
MA Hossain ◽  
MK Hossain

The study was conducted to explore tree species diversity of Renikhayong para Village Common Forest (VCF) of Bandarban hill district. Stratified random sampling was carried out to assess the tree species diversity of the VCF. Renikhayong Para VCF with an area of 40 acres of land has more than 85 tree species belonging to 31 families, where Euphorbiaceae family was dominant containing 11 species followed by Rubiaceae (7 species), Moraceae (7 species), Meliaceae (5 species), Mimosaceae (5 species), Combretaceae (4 species), Lauraceae (4 species) and Anacardiaceae (3 species). Dominant tree species was Grewia nervosa. Renikhayong para VCF has diverse floristic resources that are known from the Shannon-Wiener’s diversity index (4.007), Simpson’s diversity index (0.028), Margalef’s richness index (13.21) and Species evenness index (0.90). However, number of species and number of individuals both were highest in the height range of 5 - <10 m. Similar trend was observed in dbh classes. Number of individuals were highest in dbh range of 5 - <15 cm and the lowest in ≥ 55 cm. The results depict the presence of maximum small trees in the VCF and decreasing the number of trees with the increase of tree height (m) and dbh (cm). Presence of diverse tree species and diversity indices indicate the importance and potential of the VCF for conservation and sustainable use. J. Biodivers. Conserv. Bioresour. Manag. 2019, 5(2): 115-126


Forests ◽  
2019 ◽  
Vol 10 (11) ◽  
pp. 1047 ◽  
Author(s):  
Ying Sun ◽  
Jianfeng Huang ◽  
Zurui Ao ◽  
Dazhao Lao ◽  
Qinchuan Xin

The monitoring of tree species diversity is important for forest or wetland ecosystem service maintenance or resource management. Remote sensing is an efficient alternative to traditional field work to map tree species diversity over large areas. Previous studies have used light detection and ranging (LiDAR) and imaging spectroscopy (hyperspectral or multispectral remote sensing) for species richness prediction. The recent development of very high spatial resolution (VHR) RGB images has enabled detailed characterization of canopies and forest structures. In this study, we developed a three-step workflow for mapping tree species diversity, the aim of which was to increase knowledge of tree species diversity assessment using deep learning in a tropical wetland (Haizhu Wetland) in South China based on VHR-RGB images and LiDAR points. Firstly, individual trees were detected based on a canopy height model (CHM, derived from LiDAR points) by the local-maxima-based method in the FUSION software (Version 3.70, Seattle, USA). Then, tree species at the individual tree level were identified via a patch-based image input method, which cropped the RGB images into small patches (the individually detected trees) based on the tree apexes detected. Three different deep learning methods (i.e., AlexNet, VGG16, and ResNet50) were modified to classify the tree species, as they can make good use of the spatial context information. Finally, four diversity indices, namely, the Margalef richness index, the Shannon–Wiener diversity index, the Simpson diversity index, and the Pielou evenness index, were calculated from the fixed subset with a size of 30 × 30 m for assessment. In the classification phase, VGG16 had the best performance, with an overall accuracy of 73.25% for 18 tree species. Based on the classification results, mapping of tree species diversity showed reasonable agreement with field survey data (R2Margalef = 0.4562, root-mean-square error RMSEMargalef = 0.5629; R2Shannon–Wiener = 0.7948, RMSEShannon–Wiener = 0.7202; R2Simpson = 0.7907, RMSESimpson = 0.1038; and R2Pielou = 0.5875, RMSEPielou = 0.3053). While challenges remain for individual tree detection and species classification, the deep-learning-based solution shows potential for mapping tree species diversity.


Biosfera ◽  
2015 ◽  
Vol 32 (1) ◽  
pp. 1
Author(s):  
Donan Satria Yudha ◽  
Yonathan Yonathan ◽  
Rury Eprilurahman ◽  
Septiana Indriawan ◽  
Eka Cahyaningrum

Merapi volcano as one of national park is an ecotourism site which is very potential to visit. Information about species diversity for a national park is very important especially if its area fluctuated susceptibly. Two years after 2010 Merapi eruption, there are no research about species diversity and evenness of Anuran in that place. The research is carried out during June-November 2012 which is dry season. The objective of this research is to study the species diversity and evenness of Anuran in southern slope of Mount Merapi. The research is carried out in 6 locations; those are Kali Kuning, Telogo Muncar, Telogo Nirmolo, Petak Pitu, Bukit Turgo, and Bukit Plawangan. We used Visual Encounter Survey (VES) method combined with transect in Kali Kuning, Telogo Muncar, and Petak Pitu. VES method combined with time search in Telogo Nirmolo and Bukit Turgo. VES method combined with track exploration in Bukit Plawangan. Species diversity is analyzed with Shanon-Wiener diversity index. Species evenness is analyzed with Pielou evenness index. Total individuals each species is counted to know species abundance. Species diversity of anuran in southern slope of Mount Merapi is consisted of 12 species’ which is distributed in 6 locations. The highest diversity and evenness of anuran is at Bukit Turgo (H’=1.31; E=0.94). The lowest diversity and evenness of anuran is at Petak Pitu (H’=0.49; E=0.3). Species diversity of anuran in southern slope of Mount Merapi is low (Bukit Turgo and Kali Kuning) and very low (Bukit Plawangan, Telogo Muncar, Telogo Nirmolo, and Petak Pitu). Species evenness of anuran in southern slope of Mount Merapi is stable (Telogo Nirmolo and Bukit Turgo), still labil (Bukit Plawangan, Kali Kuning, and Telogo Muncar), and oppressed (Petak Pitu).


Tropics ◽  
2003 ◽  
Vol 12 (2) ◽  
pp. 85-102 ◽  
Author(s):  
Sakhan TEEJUNTUK ◽  
Pongsak SAHUNALU ◽  
Katsutoshi SAKURAI ◽  
Witchaphart SUNGPALEE

Sign in / Sign up

Export Citation Format

Share Document