scholarly journals IMAGING TREE ROOT ZONE GEOMETRY USING ELECTRICAL RESISTIVITY TOMOGRAPHY

2020 ◽  
Vol 30 (1) ◽  
pp. 55
Author(s):  
Asep Mulyono ◽  
Ilham Arisbaya ◽  
Yayat Sudrajat

Root zone geometry research is usually done in a conventional way which is destructive, time-consuming, and requires a considerable cost. Several non-destructive measurements used geophysical methods have been developed, one of which is the Electrical Resistivity Tomography (ERT) method. Tree root zone determination using ERT has been carried out in Kiara Payung area, Sumedang, West Java, with Maesopsis eminii tree as the object study. A total of 29 ERT lines were measured using dipoledipole configuration with electrodes spacing of 50 cm. The results of two-dimensional (2D) and three-dimensional (3D) inversion modeling show that the ERT method has been successfully imaging the tree root zone. The root zone is characterized as 100-700 Ωm with an elliptical shape geometry of the root plate. The root radius is estimated to be 4-5 m from the stem, the root zone diameter reaches 8-9 m at the shallow soil surface and the root zone depth is approximately 2-2.5 m. ABSTRAK Pencitraan geometri zona perakaran pohon menggunakan electrical resistivity tomography. Penelitian geometri zona perakaran biasa dilakukan dengan cara konvensional yang destruktif, memakan waktu, dan membutuhkan biaya yang tidak sedikit. Beberapa pengukuran non-destruktif menggunakan metode geofisika telah dikembangkan, salah satunya adalah metode Electrical Resistivity Tomography (ERT). Penentuan zona perakaran pohon menggunakan metode ERT telah dilakukan di daerah Kiara Payung, Sumedang, Jawa Barat, dengan pohon Maesopsis eminii sebagai objek studi. Sebanyak 29 lintasan ERT diukur menggunakan konfigurasi dipole-dipole pada dengan jarak antar elektroda 50 cm. Hasil pemodelan inversi dua dimensi (2D) dan tiga dimensi (3D) menunjukkan bahwa metode ERT telah berhasil mencitrakan zona perakaran pohon. Zona perakaran teridentifikasi berada pada nilai resistivitas 100-700 Ωm dengan root plate dan root cross-sections berbentuk elips. Radius akar diperkirakan sejauh 4-5 m dari pangkal batang, sedangkan diameter zona perakaran mencapai sekitar 8-9 m di permukaan tanah dangkal dan kedalaman zona perakaran diperkirakan antara ~2-2.5 m. 

2018 ◽  
Vol 19 (1) ◽  
pp. 24-34
Author(s):  
Budy Santoso

Bungaya Kangin Village, Bebandem District, Karangasem Regency, Bali Province consists of paddy fields and settlements, required therefore a water source / aquifer  that can meet all these needs. One of the Geophysical Methods that can identify the aquifer is the Geoelectric Method. Geoelectric method used in this research is Resistivity Method. Data acquisition using Vertical Electrical Sounding (VES) and Electrical Resistivity Tomography (ERT) Methods. VES method is a method of measurement to determine the variation of resistivity vertically at one point. Electrical Resistivity Tomography (ERT) method is a method of measuring resistivity on soil surface / rock by using many electrode (51 electrode), to obtain sub-surface resistivity variation  lateraly and verticaly, to obtain sub-surface image. The equipment used for geoelectric measurements is  Resistivity Meter of Naniura NRD 300 Hf which has been equipped with a switchbox to adjust the displacement of 51 electrodes. Based on the resistivity modeling results, the aquifers in the study area were found in rough sandstones with resistivity values : (49 - 100) Ohm.m.  


2011 ◽  
Vol 10 (1) ◽  
pp. 412-424 ◽  
Author(s):  
S. Garré ◽  
M. Javaux ◽  
J. Vanderborght ◽  
L. Pagès ◽  
H. Vereecken

2021 ◽  
Vol 11 (6) ◽  
pp. 2448
Author(s):  
Alex Sendrós ◽  
Aritz Urruela ◽  
Mahjoub Himi ◽  
Carlos Alonso ◽  
Raúl Lovera ◽  
...  

Water percolation through infiltration ponds is creating significant synergies for the broad adoption of water reuse as an additional non-conventional water supply. Despite the apparent simplicity of the soil aquifer treatment (SAT) approaches, the complexity of site-specific hydrogeological conditions and the processes occurring at various scales require an exhaustive understanding of the system’s response. The non-saturated zone and underlying aquifers cannot be considered as a black box, nor accept its characterization from few boreholes not well distributed over the area to be investigated. Electrical resistivity tomography (ERT) is a non-invasive technology, highly responsive to geological heterogeneities that has demonstrated useful to provide the detailed subsurface information required for groundwater modeling. The relationships between the electrical resistivity of the alluvial sediments and the bedrock and the difference in salinity of groundwater highlight the potential of geophysical methods over other more costly subsurface exploration techniques. The results of our research show that ERT coupled with implicit modeling tools provides information that can significantly help to identify aquifer geometry and characterize the saltwater intrusion of shallow alluvial aquifers. The proposed approaches could improve the reliability of groundwater models and the commitment of stakeholders to the benefits of SAT procedures.


2021 ◽  
Vol 11 (7) ◽  
pp. 3030
Author(s):  
Marcos A. Martínez-Segura ◽  
Carmelo Conesa-García ◽  
Pedro Pérez-Cutillas ◽  
Pedro Martínez-Pagán ◽  
Marco D. Vásconez-Maza

Differences in deposit geometry and texture with depth along ephemeral gravel-bed streams strongly reflect fluctuations in bedload which are due to environmental changes at the basin scale and to morphological channel adjustments. This study combines electrical resistivity tomography (ERT) with datasets from borehole logs to analyse the internal geometry of channel cross-sections in a gravel-bed ephemeral stream (southeast Spain). The survey was performed through longitudinal and transverse profiles in the upper channel stretch, of 14 to 30 m in length and 3 to 6 m in depth, approximately. ERT values were correlated with data on sediment texture as grain size distribution, effective grain sizes, sorting, and particle shape (Zingg’s classification). The alluvial channel-fills showed the superposition of four layers with uneven thickness and arrangement: (1) the softer rocky substrate (<1000 Ω.m); (2) a thicker intermediate layer (1000 to 2000 Ω.m); and (3) an upper set composed of coarse gravel and supported matrix, ranging above 2000 Ω.m, and a narrow subsurface layer, which is the most resistive (>5000 Ω.m), corresponding to the most recent armoured deposits (gravel and pebbles). The ERT results coupled with borehole data allowed for determining the horizontal and vertical behaviour of the materials in a 3D model, facilitating the layer identification.


2018 ◽  
Vol 22 (10) ◽  
pp. 5427-5444 ◽  
Author(s):  
Benjamin Mary ◽  
Luca Peruzzo ◽  
Jacopo Boaga ◽  
Myriam Schmutz ◽  
Yuxin Wu ◽  
...  

Abstract. The investigation of plant roots is inherently difficult and often neglected. Being out of sight, roots are often out of mind. Nevertheless, roots play a key role in the exchange of mass and energy between soil and the atmosphere, in addition to the many practical applications in agriculture. In this paper, we propose a method for roots imaging based on the joint use of two electrical noninvasive methods: electrical resistivity tomography (ERT) and mise-à-la-masse (MALM). The approach is based on the key assumption that the plant root system acts as an electrically conductive body, so that injecting electrical current into the plant stem will ultimately result in the injection of current into the subsoil through the root system, and particularly through the root terminations via hair roots. Evidence from field data, showing that voltage distribution is very different whether current is injected into the tree stem or in the ground, strongly supports this hypothesis. The proposed procedure involves a stepwise inversion of both ERT and MALM data that ultimately leads to the identification of electrical resistivity (ER) distribution and of the current injection root distribution in the three-dimensional soil space. This, in turn, is a proxy to the active (hair) root density in the ground. We tested the proposed procedure on synthetic data and, more importantly, on field data collected in a vineyard, where the estimated depth of the root zone proved to be in agreement with literature on similar crops. The proposed noninvasive approach is a step forward towards a better quantification of root structure and functioning.


2015 ◽  
Vol 2015 ◽  
pp. 1-13 ◽  
Author(s):  
T. Apuani ◽  
G. P. Giani ◽  
M. d’Attoli ◽  
F. Fischanger ◽  
G. Morelli ◽  
...  

The design and execution of consolidation treatment of settled foundations by means of injection of polyurethane expanding resins require a proper investigation of the state of the foundation soil, in order to better identify anomalies responsible for the instability. To monitor the injection process, a procedure has been developed, which involves, in combination with traditional geotechnical tests, the application of a noninvasive, geophysical technique based on the electrical resistivity, which is strongly sensitive to presence of water or voids. Three-dimensional electrical resistivity tomography is a useful tool to produce effective 3D images of the foundation soils before, during, and after the injections. The achieved information allows designing the consolidation scheme and monitoring its effects on the treated volumes in real time. To better understand the complex processes induced by the treatment and to learn how variations of resistivity accompany increase of stiffness, an experiment was carried out in a full-scale test site. Injections of polyurethane expanding resin were performed as in real worksite conditions. Results confirm that the experimented approach by means of 3D resistivity imaging allows a reliable procedure of consolidation, and geotechnical tests demonstrate the increase of mechanical stiffness.


Geomorphology ◽  
2012 ◽  
Vol 177-178 ◽  
pp. 17-25 ◽  
Author(s):  
J.E. Chambers ◽  
P.B. Wilkinson ◽  
D. Wardrop ◽  
A. Hameed ◽  
I. Hill ◽  
...  

Water ◽  
2021 ◽  
Vol 13 (17) ◽  
pp. 2400
Author(s):  
Alex Sendrós ◽  
Mahjoub Himi ◽  
Esmeralda Estévez ◽  
Raúl Lovera ◽  
M. Pino Palacios-Diaz ◽  
...  

The geometry and the hydraulic properties of the unsaturated zone is often difficult to evaluate from traditional soil sampling techniques. Soil samples typically provide only data of the upper layers and boreholes are expensive and only provide spotted information. Non-destructive geophysical methods and among them, electrical resistivity tomography can be applied in complex geological environments such as volcanic areas, where lavas and unconsolidated pyroclastic deposits dominate. They have a wide variability of hydraulic properties due to textural characteristics and modification processes suh as compaction, fracturation and weathering. To characterize the subsurface geology below the golf course of Bandama (Gran Canaria) a detailed electrical resistivity tomography survey has been conducted. This technique allowed us to define the geometry of the geological formations because of their high electrical resistivity contrasts. Subsequently, undisturbed soil and pyroclastic deposits samples were taken in representative outcrops for quantifying the hydraulic conductivity in the laboratory where the parametric electrical resistivity was measured in the field. A statistical correlation between the two variables has been obtained and a 3D model transit time of water infiltration through the vadose zone has been built to assess the vulnerability of the aquifers located below the golf course irrigated with reclaimed water.


2017 ◽  
Vol 11 (6) ◽  
pp. 2957-2974 ◽  
Author(s):  
Benjamin Mewes ◽  
Christin Hilbich ◽  
Reynald Delaloye ◽  
Christian Hauck

Abstract. Geophysical methods are often used to characterize and monitor the subsurface composition of permafrost. The resolution capacity of standard methods, i.e. electrical resistivity tomography and refraction seismic tomography, depends not only on static parameters such as measurement geometry, but also on the temporal variability in the contrast of the geophysical target variables (electrical resistivity and P-wave velocity). Our study analyses the resolution capacity of electrical resistivity tomography and refraction seismic tomography for typical processes in the context of permafrost degradation using synthetic and field data sets of mountain permafrost terrain. In addition, we tested the resolution capacity of a petrophysically based quantitative combination of both methods, the so-called 4-phase model, and through this analysed the expected changes in water and ice content upon permafrost thaw. The results from the synthetic data experiments suggest a higher sensitivity regarding an increase in water content compared to a decrease in ice content. A potentially larger uncertainty originates from the individual geophysical methods than from the combined evaluation with the 4-phase model. In the latter, a loss of ground ice can be detected quite reliably, whereas artefacts occur in the case of increased horizontal or vertical water flow. Analysis of field data from a well-investigated rock glacier in the Swiss Alps successfully visualized the seasonal ice loss in summer and the complex spatially variable ice, water and air content changes in an interannual comparison.


Sign in / Sign up

Export Citation Format

Share Document