Depositional facies analysis in clastic sedimentary environments based on neural network clustering and probabilistic extension two case studies from South-Eastern Hungary and Northern Croatia

2015 ◽  
Author(s):  
Janina Horváth
2021 ◽  
Vol 17 (2) ◽  
pp. 1-27
Author(s):  
Morteza Hosseini ◽  
Tinoosh Mohsenin

This article presents a low-power, programmable, domain-specific manycore accelerator, Binarized neural Network Manycore Accelerator (BiNMAC), which adopts and efficiently executes binary precision weight/activation neural network models. Such networks have compact models in which weights are constrained to only 1 bit and can be packed several in one memory entry that minimizes memory footprint to its finest. Packing weights also facilitates executing single instruction, multiple data with simple circuitry that allows maximizing performance and efficiency. The proposed BiNMAC has light-weight cores that support domain-specific instructions, and a router-based memory access architecture that helps with efficient implementation of layers in binary precision weight/activation neural networks of proper size. With only 3.73% and 1.98% area and average power overhead, respectively, novel instructions such as Combined Population-Count-XNOR , Patch-Select , and Bit-based Accumulation are added to the instruction set architecture of the BiNMAC, each of which replaces execution cycles of frequently used functions with 1 clock cycle that otherwise would have taken 54, 4, and 3 clock cycles, respectively. Additionally, customized logic is added to every core to transpose 16×16-bit blocks of memory on a bit-level basis, that expedites reshaping intermediate data to be well-aligned for bitwise operations. A 64-cluster architecture of the BiNMAC is fully placed and routed in 65-nm TSMC CMOS technology, where a single cluster occupies an area of 0.53 mm 2 with an average power of 232 mW at 1-GHz clock frequency and 1.1 V. The 64-cluster architecture takes 36.5 mm 2 area and, if fully exploited, consumes a total power of 16.4 W and can perform 1,360 Giga Operations Per Second (GOPS) while providing full programmability. To demonstrate its scalability, four binarized case studies including ResNet-20 and LeNet-5 for high-performance image classification, as well as a ConvNet and a multilayer perceptron for low-power physiological applications were implemented on BiNMAC. The implementation results indicate that the population-count instruction alone can expedite the performance by approximately 5×. When other new instructions are added to a RISC machine with existing population-count instruction, the performance is increased by 58% on average. To compare the performance of the BiNMAC with other commercial-off-the-shelf platforms, the case studies with their double-precision floating-point models are also implemented on the NVIDIA Jetson TX2 SoC (CPU+GPU). The results indicate that, within a margin of ∼2.1%--9.5% accuracy loss, BiNMAC on average outperforms the TX2 GPU by approximately 1.9× (or 7.5× with fabrication technology scaled) in energy consumption for image classification applications. On low power settings and within a margin of ∼3.7%--5.5% accuracy loss compared to ARM Cortex-A57 CPU implementation, BiNMAC is roughly ∼9.7×--17.2× (or 38.8×--68.8× with fabrication technology scaled) more energy efficient for physiological applications while meeting the application deadline.


2011 ◽  
Vol 62 (3) ◽  
pp. 223 ◽  
Author(s):  
Allison Aldous ◽  
James Fitzsimons ◽  
Brian Richter ◽  
Leslie Bach

Climate change is expected to have significant impacts on hydrologic regimes and freshwater ecosystems, and yet few basins have adequate numerical models to guide the development of freshwater climate adaptation strategies. Such strategies can build on existing freshwater conservation activities, and incorporate predicted climate change impacts. We illustrate this concept with three case studies. In the Upper Klamath Basin of the western USA, a shift in land management practices would buffer this landscape from a declining snowpack. In the Murray–Darling Basin of south-eastern Australia, identifying the requirements of flood-dependent natural values would better inform the delivery of environmental water in response to reduced runoff and less water. In the Savannah Basin of the south-eastern USA, dam managers are considering technological and engineering upgrades in response to more severe floods and droughts, which would also improve the implementation of recommended environmental flows. Even though the three case studies are in different landscapes, they all contain significant freshwater biodiversity values. These values are threatened by water allocation problems that will be exacerbated by climate change, and yet all provide opportunities for the development of effective climate adaptation strategies.


Author(s):  
V. P. Martsenyuk ◽  
P. R. Selskyy ◽  
B. P. Selskyy

The paper describes the optimization of the prediction of disease at the primary health care level with a complex phased application of information techniques. The approach is based on analysis of the average values of indicators, correlation coefficients, using multi-parameter neural network clustering, ROC-analysis and decision tree.The data of 63 patients with arterial hypertension obtained at teaching and practical centers of primary health care were used for the analysis. It has been established that neural network clasterization can effectively and objectively allocate patients into the appropriate categories according to the level of average indices of patient examination results. Determination of the sensitivity and specificity of hemodynamic parameters, including blood pressure, and repeated during the initial survey was conducted using ROC-analysis.The diagnostic criteria of decision-making were developed to optimize the prediction of disease at the primary level in order to adjust examination procedures and treatment based on the analysis of indicators of patient examination with a complex gradual application of information procedures.


2020 ◽  
Vol 126 ◽  
pp. 104663
Author(s):  
Ioannis A. Troumbis ◽  
George E. Tsekouras ◽  
John Tsimikas ◽  
Christos Kalloniatis ◽  
Dias Haralambopoulos

Sign in / Sign up

Export Citation Format

Share Document