scholarly journals Vibrational Spectroscopic Analysis of 10H-Dibenzo[b,e][2,4]oxazine and Investigate their Structural Reactivity by DFT Computations and Molecular Docking Analysis

2020 ◽  
Vol 32 (10) ◽  
pp. 2475-2485
Author(s):  
M. Latha Beatrice ◽  
S. Mary Delphine ◽  
M. Amalanathan ◽  
H. Marshan Robert

The molecular structure and vibrational spectra of 10H-dibenzo[b,e][2,4]oxazine was calculated with the help of B3LYP density functional theory (DFT) using 6-311G (d,p) basis set. The FT-IR and FT-Raman spectra of title compound were interpreted by comparing the experimental results with the theoretical B3LYP/6-311G (d,p) calculations. The experimental observed vibrational frequencies are compared with the calculated vibrational frequencies and they are in good agreement with each other. Natural bond orbital (NBO) analysis interprets the intramolecular contacts of title molecule. The 1H and 13C NMR chemical movements of the particle have been determined by the gauge independent atomic orbital (GIAO) strategy and contrasted with the experimental outcome. The deciphered HOMO and LUMO energies showed the chemical stability of the molecules. Fukui capacity and natural charge investigation on atomic charges of the title molecule have been discussed. Docking reads were performed for title molecule utilizing the molecular docking programming with fungicidal dynamic PDB’s.

2013 ◽  
Vol 2013 ◽  
pp. 1-10 ◽  
Author(s):  
Mustafa Karakaya ◽  
Fatih Ucun ◽  
Ahmet Tokatlı

The optimized molecular structures and vibrational frequencies and also gauge including atomic orbital (GIAO)1H and13C NMR shift values of benzoylcholine chloride [(2-benzoyloxyethyl) trimethyl ammonium chloride] have been calculated using density functional theory (B3LYP) method with 6-31++G(d) basis set. The comparison of the experimental and calculated infrared (IR), Raman, and nuclear magnetic resonance (NMR) spectra has indicated that the experimental spectra are formed from the superposition of the spectra of two lowest energy conformers of the compound. So, it was concluded that the compound simultaneously exists in two optimized conformers in the ground state. Also the natural bond orbital (NBO) analysis has supported the simultaneous exiting of two conformers in the ground state. The calculated optimized geometric parameters (bond lengths and bond angles) and vibrational frequencies for both the lowest energy conformers were seen to be in a well agreement with the corresponding experimental data.


2018 ◽  
Vol 9 (2) ◽  
pp. 74-78 ◽  
Author(s):  
Bushra Kamil Al-Salami

We have synthesized and characterized a series of carbothioamide derivatived molecules, obtained by reaction of aromatic aldehyde (Anisaldehyde, 9-anthraldehyde, cinnamaldehyde, indole-3-carboxaldehyde, 1-naphthaldehyde and o-vanillin) with an equimolar amount of 4-phenylthiosemicarbazide with microwave irradiation. The synthesized compounds have been characterized by FT-IR, 1H NMR and 13C NMR spectroscopy. Quantum calculations of the physical properties, based on density functional theory method at B3LYP/6-31+G(d,p) level of theory, were performed, by means of the Gaussian 09W set of programs. The theoretical 1H NMR chemical shift results of the studied compounds have been calculated at B3LYP method and standard 6-31+G(d,p) basis set using the standard Gauge-Independent Atomic Orbital approach. The calculated values are also compared with the experimental data available for these molecules. A good linear relationship between the experimental and calculated data has been obtained.


2019 ◽  
Vol 16 (12) ◽  
pp. 983-995
Author(s):  
Roop Kumar ◽  
Poornima Devi ◽  
Anil K. Verma ◽  
Abha Bishnoi

: Structural elucidation of synthesized 2,6-diphenylspiro[cyclohexane-1,3’-pyrido[1,2- a]pyrimidine]-2’,4,4’-trione has been done by UV, FT-IR, 1H, 13C NMR and mass spectroscopy. The molecule was further subjected to density functional theory (DFT) studies with B3LYP function using 6-31G(d,p) basis atomic set. The title molecule was investigated on the basis of thermodynamic properties, polarizability, hyperpolarizability, intermolecular interactions, HOMO and LUMO energy values, MESP, ESP and NBO computations to correlate experimental results with in-silico studies.


2019 ◽  
Vol 31 (6) ◽  
pp. 1332-1342 ◽  
Author(s):  
KATTAESWAR SRIKANTH ◽  
RAMAIAH KONAKANCHI ◽  
JYOTHI PRASHANTH

The experimental FT-IR spectral analysis of 9-chloroanthracene has worked out by using density functional theory (DFT). The optimized molecular structure and minimum energy of 9-chloroanthracene has analyzed using DFT/B3LYP functional employing 6-311++G(d,p) basis set. The vibrational frequencies along with IR intensities were computed, scaling was used for a better fit between the experimental and computed frequencies, they agreed with rms error 8.48 cm-1 for 9-chloroanthracene. The NLO behaviour of the molecule is investigated from first-order hyperpolarizability. The HOMO and LUMO energies are evaluated to demonstrate the chemical stability, reactivity of molecule. The MESP over the molecules were plotted to evaluate electron density regions and thermodynamic parameters are calculated. Hyper conjugative interactions and charge delocalization of the molecule study from NBO analysis and Fukui functions are evaluated for 9-chloroanthracene. The molecular docking studies were performed against anticancer protein targets Tyrosinase and HER2.


2018 ◽  
Vol 16 (1) ◽  
pp. 653-666
Author(s):  
Maha S. Almutairi ◽  
S. Soumya ◽  
Reem I. Al-Wabli ◽  
I. Hubert Joe ◽  
Mohamed I. Attia

AbstractVibrational spectral analysis and quantum chemical computations based on density functional theory have been performed on the antimicrobial agent 6-(1,3-benzodioxol-5-ylmethyl)-5-ethyl-2-{[2-(morpholin- 4-yl)ethyl]sulfanyl}pyrimidin-4-(3H)-one.The equilibrium structural geometry, various bonding features and harmonic vibrational wavenumbers of the title compound have been investigated using DFT-B3LYP function at 6-311++G(d, p) basis set. The detailed interpretations of the vibrational spectra have been carried out with the aid of VEDA 4 program. The various intramolecular interactions of the title compound have been exposed by natural bond orbital analysis. The FT-IR and FT-Raman spectra of the title molecule have been recorded and analyzed. Blue-shifting of the C-H wavenumber along with a decrease in the C-H bond length attribute for the formation of the C-H...O hydrogrn bonding provide an evidence for a charge transfer interaction. Also, the distribution of natural atomic charges reflects the presence of intramolecular hydrogen bonding. The analysis of the electron density of HOMO and LUMO gives an idea of the delocalization and the low value of energy gap indicates electron transfer within the molecule. Moreover, molecular docking studies revealed the possible binding of the title molecule to different antimicrobial target proteins.


Author(s):  
R. Solaichamy ◽  
J. Karpagam

In this study, optimized geometry, spectroscopic (FT-IR, FT-Raman, UV) analysis, and electronic structure analysis of Abacavir were investigated by utilizing DFT/B3LYP with 6-31G(d,p) as a basis set. Complete vibrational assignments and correlation of the fundamental modes for the title compound were carried out. The calculated molecular geometry has been compared with available X-ray data of Abacavir. The calculated HOMO and LUMO energies show that charge transfer occurs within the molecule. The molecular stability and bond strength have been investigated by applying the Natural Bond Orbital (NBO) analysis. The computational molecular docking studies of title compound have been performed.


2015 ◽  
Vol 8 (3) ◽  
pp. 2197-2221
Author(s):  
Theraviyum Chithambarathanu ◽  
M. Darathi ◽  
J. DaisyMagdaline ◽  
S. Gunasekaran

The molecular vibrations of Trichloro isocyanuric acid (C3Cl3N3O3) and Trithio cyanuric acid (C3H3N3S3) have been investigated in polycrystalline sample at room temperature by Fourier Transform Infrared (FT-IR) and FT-Raman spectroscopies in the region 4000-450 cm-1 and 4000-50 cm-1 respectively, which provide a wealth of structural information about the molecules. The spectra are interpreted with the aid of normal co-ordinate analysis following full structure optimization and force field calculations based on density functional theory   (DFT) using standard B3LYP / 6-311++ G (d, p) basis set for investigating the structural and spectroscopic properties. The vibrational frequencies are calculated and the scaled values are compared with experimental FT-IR and FT-Raman spectra. The scaled theoretical wave numbers shows very good agreement with experimental ones. The complete vibrational assignments are performed on the basis of potential energy distribution (PED) of vibrational modes, calculated with scaled quantum (SQM) method. Stability of the molecule arising from hyper conjugative interactions, charge delocalization has been analyzed using natural bond orbital (NBO) analysis. The results show that change in electron density (ED) in σ* and π* anti-bonding orbitals and second order delocalization   energy (E2) confirm the occurrence of Intra molecular Charge Transfer (ICT) within the molecule. The thermodynamic properties like heat capacity, entropy, enthalpy and zero point energy have been calculated for the molecule. The frontier molecular orbitals have been visualized and the HOMO-LUMO energy gap has been calculated. The Molecular Electrostatic Potential (MEP) analysis reveals the sites for electrophilic attack and nucleophilic reactions in the molecule.


2019 ◽  
Vol 19 (6) ◽  
pp. 419-433 ◽  
Author(s):  
Siyamak Shahab ◽  
Masoome Sheikhi ◽  
Liudmila Filippovich ◽  
Evgenij Dikusar ◽  
Anhelina Pazniak ◽  
...  

: In this study, the antioxidant property of new synthesized azomethins has been investigated as theoretical and experimental. Methods and Results: Density functional theory (DFT) was employed to investigate the Bond Dissociation Enthalpy (BDE), Mulliken Charges, NBO analysis, Ionization Potential (IP), Electron Affinities (EA), HOMO and LUMO energies, Hardness (η), Softness (S), Electronegativity (µ), Electrophilic Index (ω), Electron Donating Power (ω-), Electron Accepting Power (ω+) and Energy Gap (Eg) in order to deduce scavenging action of the two new synthesized azomethines (FD-1 and FD-2). Spin density calculations and NBO analysis were also carried out to understand the antioxidant activity mechanism. Comparison of BDE of FD-1 and FD-2 indicate the weal antioxidant potential of these structures. Conclusion: FD-1 and FD-2 have very high antioxidant potential due to the planarity and formation of intramolecular hydrogen bonds.


Molecules ◽  
2021 ◽  
Vol 26 (12) ◽  
pp. 3631
Author(s):  
Ahmed M. Deghady ◽  
Rageh K. Hussein ◽  
Abdulrahman G. Alhamzani ◽  
Abeer Mera

The present investigation informs a descriptive study of 1-(4-Hydroxyphenyl) -3-phenylprop-2-en-1-one compound, by using density functional theory at B3LYP method with 6-311G** basis set. The oxygen atoms and π-system revealed a high chemical reactivity for the title compound as electron donor spots and active sites for an electrophilic attack. Quantum chemical parameters such as hardness (η), softness (S), electronegativity (χ), and electrophilicity (ω) were yielded as descriptors for the molecule’s chemical behavior. The optimized molecular structure was obtained, and the experimental data were matched with geometrical analysis values describing the molecule’s stable structure. The computed FT-IR and Raman vibrational frequencies were in good agreement with those observed experimentally. In a molecular docking study, the inhibitory potential of the studied molecule was evaluated against the penicillin-binding proteins of Staphylococcus aureus bacteria. The carbonyl group in the molecule was shown to play a significant role in antibacterial activity, four bonds were formed by the carbonyl group with the key protein of the bacteria (three favorable hydrogen bonds plus one van der Waals bond) out of six interactions. The strong antibacterial activity was also indicated by the calculated high binding energy (−7.40 kcal/mol).


Sign in / Sign up

Export Citation Format

Share Document