scholarly journals Solvation Behaviour of Some Copper(I) Nitrate Complexes in Dimethylsulfoxide and Nitromethane at 298 K

2021 ◽  
Vol 33 (8) ◽  
pp. 1776-1782
Author(s):  
Vivek Pathania ◽  
Manpreet Kaur ◽  
B.K. Vermani ◽  
Shrutila Sharma ◽  
Navya Grover

The ultrasonic velocities of solutions of Bu4NBPh4, Bu4NClO4, [Cu(AN)4]NO3, [Cu(BN)4]NO3, [Cu(Phen)2]NO3, [Cu(DMPhen)2]NO3, [Cu(Bipy)2]NO3 and [Cu(TU)4]NO3 (where AN = acetonitrile, BN = benzonitrile, Phen = 1,10-phenanthroline, DMPhen = 2,9-dimethyl-1,10-phenanthroline, Bipy = 2,2′-bipyridyl and TU = thiourea) were measured in the concentration range 0.03-0.27 M in dimethylsulfoxide (DMSO), nitromethane (NM) and binary mixtures of DMSO + NM containing 0, 20, 40, 60, 80 and 100 mol% NM at 298 K in the present studies. Using ultrasonic velocity and density data, isentropic compressibility (κs) and apparent molal isentropic compressibility (κs,φ) for electrolytes in DMSO + NM mixture have been calculated. Result shows that copper(I) electrolytes show less solvation in NM rich regions indicating structure breaking tendency of nitromethane. Extent of solvation in Cu(I) ions decreases in the order: [Cu(AN)4]+ > [Cu(BN)4]+ > [Cu(TU)4]+ > [Cu(DMPhen)2]+ > [Cu(Phen)2]+ > [Cu(Bipy)2]+.

2020 ◽  
Vol 11 (3) ◽  
pp. 10052-10058

In the present study, the excess molar volume (VE) and the deviations in intermolecular free length (ΔLf), isentropic compressibility (Δβs), acoustic impedance (ΔZ), and ultrasonic velocity (ΔU) were calculated using the experimentally measured values of density (ρ) and ultrasonic velocity (U) of binary mixtures of an acidic organophosphoric extractant (DEHPA) with two substituted aromatic hydrocarbons, i.e., p-xylene and toluene at 303.15K and atmospheric pressure, 0.1MPa over the entire composition range of DEHPA. The results of both binary mixtures have been presented graphically and compared in terms of molecular interaction between unlike molecules of the mixtures, which outcome may be applied in the solvent extraction process.


1989 ◽  
Vol 67 (3) ◽  
pp. 437-441 ◽  
Author(s):  
J. D. Pandey ◽  
R. D. Rai ◽  
R. K. Shukla

Various statistical and empirical theories of ultrasonic velocity have been applied to a binary liquid mixture (benzene + nitrobenzene) at elevated pressures and their validity have been tested. A pressure-dependent study of ultrasonic velocities has been made at three different temperatures (293.15, 303.15, and 313.15 K). The agreement between the theory and experiment is found to be satisfactory. Keywords: ultrasonic velocity, benzene + nitrobenzene, pressure dependent, theoretical evaluation, binary mixtures at elevated pressures.


2005 ◽  
Vol 60 (1-2) ◽  
pp. 70-74 ◽  
Author(s):  
Dip Singh Gill ◽  
Avnesh Kumari ◽  
Surinder Kumar Sharma ◽  
Surinder Pal Jauhar

Ultrasonic velocities and densities of binary mixtures of acetonitrile (AN) and n-butyronitrile (n-BTN) with Bu4NBPh4, Bu4 NClO4, Bu4 NI, Bu4NBr, Pr4NBr, Et4NI, Et4NBPh4, NaBPh4, NaClO4 and CuClO4 have been measured in the concentration range 0.0045 - 0.2 mol kg−1 over the entire composition range at 298.15 K. Isentropic compressibilities (Ks) and apparent molal isentropic compressibilities (Ks,ø ) have been calculated. Limiting apparent molal isentropic compressibilities (Kos,ø ) have been evaluated and split into the contribution of individual ions, i. e. into (Kos,ø )± values. (Kos,ø )± for Cu+, Na+ and Br− in all cases is negative and large, for Bu4N+ and Ph4B− positive and large, and for I− and ClO4− negative only in AN, and becomes positive in binary mixtures of AN and n-BTN for all compositions. The negative (Kos,ø )± values for Cu+, Na+ and Br− indicate strong ionsolvent interactions involving electrostatic ion-dipole interactions. The large and positive (Kos,ø )± values for Bu4N+ and Ph4B− show some special type of ion-solvent interactions (hydrophobic or dispersion interactions) with AN and n-BTN. The small negative value changing to a small positive value for I− and ClO4 − indicates the change of a weak electrostatic ion-solvent interaction to another weak special interaction. A comparison of (Kos,ø )± for Cu+ in some solvent systems shows that the ion-solvent interaction behaviour of Cu+ in AN+ n-BTN is similar to that in AN+ NM, AN+ TEP, BN+ TEP and PY + TEP mixtures but differs from that observed in AN+DMF and AN+DMSO mixtures.


2020 ◽  
Vol 10 ◽  
Author(s):  
Bhavi Patel ◽  
Bhavya Salvi ◽  
Vivekanand Mishra ◽  
Ritesh Yadav

Background: The Binary mixtures of the isopropanol/isobutanol/isoamylalcohol with equimolar mixture of ethanol and formamide consists of different ultrasonic properties have been studied at room temperature at a fixed frequency of 2 MHz. The ultrasonic related physical parameters like velocity (U), density (ρ), adiabatic compressibility (βad), intermolecular free length (Lf) ,acoustic impedance (Z) etc. have been studied. The theoretical evaluation of ultrasonic velocity in liquid mixtures offers a transparent method for the study of the nature of molecular interactions in the mixtures besides verifying the applicability of different theories such as Nomoto’s, Van Dael and Vangeel’s, Impedance Dependence relation, Junjie’s relation, Rao’s specific sound velocity relation and Jacobson’s relations, Percentage deviations of theoretical ultrasonic velocities from experimental values in the mixtures of all liquid mixture and also calculated values of ultrasonic velocity from polynomials of for all the schemes with mole fraction (x) of isopropanol/isobutanol/isoamyl alcohol. Objective: The main focus of the present work was to prepare the structural changes associated with the liquid mixtures having weakly interacting components as well as strongly interacting components. The study of molecular is association in mixtures having exact information of thermodynamic mixing properties such as adiabatic compressibility, intermolecular free length, free volume, internal pressure and molar volume and has a great importance in theoretical and applied areas of research. The ultrasonic study has been a subject of active interest during the past many years. This branch of physical sciences has played a great role in deciding the interactions between the molecules of compounds under study not only that, but also it exists a potential tool in evaluating energy exchange between various degrees of freedom and nonlinear properties in binary liquid mixtures. Methods: The binary liquid mixtures were prepared by mixing the two components, by weight, using an electronic analytical balance (Reptech RA2012) accurate to within ±0.0001 g. The average uncertainty in mole fraction of binary mixtures was estimated to be ±0.0001. To avoid losses of solvent due to evaporation, mixtures were stored in specially designed ground-glass airtight ampoules and placed in a dark place to avoid photolytic effects. Results: These empirical fittings of data are described qualitatively and quantitatively using experimental speed data even in the specific interaction predominant region where non-ideal behavior of the mixture is observed. The values of sound velocities and percentage deviation, (after determining the co-efficient in the polynomial equations by applying least squares method) have been compiled in the tables respectively. Conclusion: The ultrasonic velocities and densities for all the three mixtures are measured and the values of are calculated from these values.The observed trends of and indicate the presence of weak interactions and the strength of these interactions follow the order EMM+IPA>EMM+IBA>EMM+IAA. Besides, the ultrasonic velocities gauge from different velocity theories are correlated with the experimentally measured ultrasonic velocities. Among these theories the Jacobson’s velocity equation gives good result between the experimental and theoretical ultrasonic velocity values for all the binary mixtures occupied.


1999 ◽  
Vol 48 (11) ◽  
pp. 2087
Author(s):  
LU YI-GANG ◽  
FENG JIN-YUAN ◽  
DONG YAN-WU ◽  
TONG JIE

Sign in / Sign up

Export Citation Format

Share Document