scholarly journals In silico, ADMET and Docking Analysis for the Compounds of Chloroform Extract of Tinospora cardifolia (Wild.) Identified by GC-MS and Spectral Analysis for Antidiabetic and Anti-Inflammatory Activity

2022 ◽  
Vol 34 (2) ◽  
pp. 342-354
Author(s):  
D. Senthil Kumar ◽  
D. Karthikeyan ◽  
Biswabara Roy

The present study was aimed to phytochemical and GC-MS analysis for chloroform extract of Tinospora cardifolia. The structure of the compounds was further confirmed by UV-spectroscopy and FTIR study. The in silico study like molecular, physico-chemical and drug likeliness property was carried out by computational approaches for the identified molecules. Further toxicity potential and pharmacokinetic profile were also determined. The study was carried out using OSIRIS data warrior and Swiss ADME tools. The docking analysis was carried out for the antidiabetic and anti-inflammatory profiles. The compounds were targeted for α-glucosidase, peroxisome proliferator-activated receptor, glucose transporter-1, cyclo-oxygenase-1 & 2 inhibitions. There were around 12 compounds identified by GC-MS analysis. All the compounds exhibited moderate to good drug likeliness and pharmacokinetic potentials. The molecules showed a good bioactivity score against enzyme receptors. The ADMET prediction showed PGP and CYP-inhibitory effects with the least toxic profile. The docking analysis showed strong binding affinity of [1S-(1α,3aα,4α,6aα)]-1H,3H-furo[3,4-c]furan tetrahydrophenyl (molecule-7) on targeted proteins under investigation.

Endocrinology ◽  
2011 ◽  
Vol 152 (10) ◽  
pp. 3648-3660 ◽  
Author(s):  
Olga Dubuisson ◽  
Emily J. Dhurandhar ◽  
Rashmi Krishnapuram ◽  
Heather Kirk-Ballard ◽  
Alok K. Gupta ◽  
...  

Although thiazolidinediones (TZD) effectively improve hyperglycemia and increase adiponectin, a proinsulin-sensitizing adipokine, they also increase adipogenesis via peroxisome proliferator-activated receptor (PPAR)γ induction, which may be undesirable. Recent safety concerns about some TZD have prompted the search for next generation agents that can enhance glycemic control and adiponectin independent of PPARγ or adipogenesis. Reminiscent of TZD action, a human adenovirus, adenovirus 36 (Ad36), up-regulates PPARγ, induces adipogenesis, and improves systemic glycemic control in vivo. We determined whether this effect of Ad36 requires PPARγ and/or adipogenesis. Glucose uptake and relevant cell signaling were determined in mock-infected or human adenoviruses Ad36 or Ad2-infected cell types under the following conditions: 1) undifferentiated human-adipose-tissue-derived stem cells (hASC), 2) hASC differentiated as adipocytes, 3) hASC in presence or absence of a PPARγ inhibitor, 4) NIH/3T3 that have impaired PPARγ expression, and 5) PPARγ-knockout mouse embryonic fibroblasts. Mouse embryonic fibroblasts with intact PPARγ served as a positive control. Additionally, to determine natural Ad36 infection, human sera were screened for Ad36 antibodies. In undifferentiated or differentiated hASC, or despite the inhibition, down-regulation, or the absence of PPARγ, Ad36 significantly enhanced glucose uptake and PPARγ, adiponectin, glucose transporter 4, and glucose transporter 1 protein abundance, compared with mock or Ad2-infected cells. This indicated that Ad36 up-regulates glucose uptake and adiponectin secretion independent of adipogenesis or without recruiting PPARγ. In humans, natural Ad36 infection predicted greater adiponectin levels, suggesting a human relevance of these effects. In conclusion, Ad36 provides a novel template to metabolically remodel human adipose tissue to enhance glycemic control without the concomitant increase in adiposity or PPARγ induction associated with TZD actions.


Molecules ◽  
2020 ◽  
Vol 25 (14) ◽  
pp. 3116
Author(s):  
Abeer H. Elmaidomy ◽  
Hani A. Alhadrami ◽  
Elham Amin ◽  
Hanan F. Aly ◽  
Asmaa M. Othman ◽  
...  

Premna odorata Blanco (Lamiaceae) is an ethnomedicinal plant native to different tropical regions. Although some reports addressed their anti-inflammatory, cytotoxic, and antituberculotic effects, their hepatoprotective potential is yet to be discovered. Accordingly, this study investigated the crude extract and different fractions of the plant leaves; metabolic profiling using liquid chromatography/high-resolution electrospray ionization mass spectroscopy (LC–HRESIMS) analysis, in silico absorption, distribution, metabolism, excretion, and toxicity (ADMET) properties for the dereplicated metabolite via online PreADMET program, ROS scavenger activity on the Hep G2 human liver cancer cell line, and the possible hepatic cellular treatment effects in alcohol-inflamed liver female Wistar albino rats. Metabolic profiling dereplicated a total of 28 metabolites from the crude extract and its various fractions. In silico ADMET and ROS scavenger activity screening suggested plant metabolites are of potential bioactivity. In vivo hepatic treatment with crude, defatted crude, and n-hexane leave extracts suggested all extracts significantly improved liver damage, which was indicated by the reduction of elevated serum levels of bilirubin, AST, ALT, ALP, CRP, TNF-α, ICAM-1, VCAM-1, and MDA. The reduced levels of GSH and TAC were normalized during the study. Histological examinations of liver tissue showed collagen fiber distribution nearly back to its normal pattern. The anti-inflammatory and antioxidant potentials of Premna odorata extracts could be partly related to the combined effects of these phytochemicals or their synergistic interactions.


Molecules ◽  
2021 ◽  
Vol 26 (19) ◽  
pp. 5814
Author(s):  
Fabian Gendrisch ◽  
Birgit Haarhaus ◽  
Christoph M. Schempp ◽  
Ute Wölfle

Psoriasis is a chronic inflammatory skin disease characterized by hyperproliferation of keratinocytes and a pro-inflammatory milieu in the skin. While patients with moderate to severe psoriasis are treated using targeted therapies (small molecules and monoclonal antibodies), patients suffering from milder forms are still in need of effective topical products without adverse effects. Antimony compounds (ACs) are regularly used as anti-inflammatory compounds in traditional and anthroposophic medicine and as antiprotozoan drugs. Here, we examined the effect of metallic antimony, natural antimony(III) sulfide and potassium antimonyl(III) tartrate in vitro on psoriasis-like keratinocytes and the human dendritic cell line THP-1 using qPCR, immunocytochemistry, ELISA and flow cytometry. In psoriatic keratinocytes, ACs inhibited the overexpression of the antimicrobial peptide β-defensin 2 and glucose transporter 1, as well as the hyperproliferation marker keratin 17. Furthermore, ACs mediated anti-inflammatory effects by reducing nuclear translocation of the p65 subunit of NF-κB and pSTAT3 and inhibited pro-inflammatory cytokine secretion by keratinocytes. In addition, ACs displayed anti-psoriatic effects by reducing the activation of IFN-α-treated THP-1 cells as well as the expression of the psoriasis-promoting master cytokine IL-23 by these cells. While all ACs showed anti-psoriatic effects, the most prominent results were seen with potassium antimonyl(III) tartrate. In summary, ACs display numerous anti-psoriatic effects in vitro at subtoxic concentrations. We conclude that ACs are interesting compounds for the topical treatment of psoriasis that warrant further investigation in clinical studies.


Sign in / Sign up

Export Citation Format

Share Document