Stability Indicating RP-UPLC Photo-Diode Array based Method for Determination of Edoxaban Tosylate

2020 ◽  
Vol 5 (3) ◽  
pp. 273-276
Author(s):  
D.M. Patel ◽  
B. Rana ◽  
S. Maru ◽  
A.J. Vyas ◽  
A.B. Patel ◽  
...  

The objective of the current study was to develop a specific, precise, accurate and robust gradient stability indicating reversed-phase ultra performance liquid chromatography (RP-UPLC-PDA) assay method and validated for determination of edoxaban tosylate in API. Gradient separation was achieved on an acquity UPLC BEH C18 column (50 mm, 2.1 mm and 1.7 μm) column using mobile phase of acetoitrile:20 mM potassium dihydrogen phosphate, pH 3.0 ± 0.05 adjust with OPA at flow rate of 0.6 mL/min, the injection volume was 1 μL and the detection was carried out of 289 nm by using photodiode array detector. The drug was subjected to oxidation, hydrolysis, photolysis, and heat to apply stress condition. The method was linear in the drug concentration range of 100-300 μg/mL with correlation coefficient of 0.999. Degradation products produced as a result of stress studies did not interfere with detection of edoxaban tosylate and the assay, thus developed stability indicating method can be used for routine analysis in pharmaceutical industry.

2013 ◽  
Vol 8 ◽  
pp. ACI.S11256 ◽  
Author(s):  
Sylvain Auvity ◽  
Fouad Chiadmi ◽  
Salvatore Cisternino ◽  
Jean-Eudes Fontan ◽  
Joël Schlatter

A stability-indicating reversed-phase high performance liquid chromatography (RP-HPLC) method was developed for the determination of betaxolol hydrochloride, a drug used in the treatment of hypertension and glaucoma. The desired chromatographic separation was achieved on a Nucleosil C18, 4 μm (150 × 4.6 mm) column, using isocratic elution at a 220 nm detector wavelength. The optimized mobile phase consisted of a 0.02 M potassium dihydrogen phosphate: methanol (40:60, v/v, pH 3.0 adjusted with o-phosphoric acid) as solvent. The flow rate was 1.6 mL/min and the retention time of betaxolol hydrochloride was 1.72 min. The linearity for betaxolol hydrochloride was in the range of 25 to 200 μg/mL. Recovery for betaxolol hydrochloride was calculated as 100.01%-101.35%. The stability-indicating capability was established by forced degradation experiments and the separation of unknown degradation products. The developed RP-HPLC method was validated according to the International Conference on Harmonization (ICH) guidelines. This validated method was applied for the estimation of betaxolol hydrochloride in commercially available tablets.


2012 ◽  
Vol 2012 ◽  
pp. 1-9 ◽  
Author(s):  
Kanakapura B. Vinay ◽  
Hosakere D. Revanasiddappa ◽  
Cijo M. Xavier ◽  
Pavagada J. Ramesh ◽  
Madihalli S. Raghu

The use of Ultra Performance Liquid Chromatography (UPLC), with a rapid 5-minute reversed phase isocratic separation on a 1.7 μm reversed-phase packing material to provide rapid ‘‘high throughput’’ support for tramadol hydrochloride (TMH) is demonstrated. A simple, precise and accurate stability-indicating isocratic UPLC method was developed for the determination of TMH in bulk drug and in its tablets. The method was developed using Waters Aquity BEH C18 column (100 mm × 2.1 mm, 1.7 μm) with mobile phase consisting of a mixture of potassium dihydrogen phosphate buffer of pH 2.8 and an equal volume of acetonitrile (60 : 40 v/v). The eluted compound was detected at 226 nm with a UV detector. The standard curve of mean peak area versus concentration showed an excellent linearity over a concentration range 0.5–300 μg mL−1 TMH with regression coefficient (r) value of 0.9999. The limit of detection (S/N =3) was 0.08 μg mL−1 and the limit of quantification (S/N =10) was 0.2 μg mL−1. Forced degradation of the bulk sample was conducted an accordance with the ICH guidelines. Acidic, basic, hydrolytic, oxidative, thermal and photolytic degradation were used to assess the stability indicating power of the method. TMH was found to degrade significantly in acidic, basic and oxidative stress conditions and stable in thermal, hydrolytic and photolytic conditions.


2020 ◽  
Vol 58 (4) ◽  
pp. 346-354
Author(s):  
Narendra Singh ◽  
Parveen Bansal ◽  
Mukesh Maithani ◽  
Yashpal Chauhan

Abstract A simple and precise novel stability-indicating method for the simultaneous estimation of tezacaftor and ivacaftor in combined tablet dosage form was developed and validated using reversed-phase high-performance liquid chromatography (RP-HPLC). The method is being reported for the first time and includes an estimation of degradation products produced post-stress conditions without any extraction or derivatization. The chromatographic separation of the drugs was achieved with a Symmetry Shield RP18 Column (100 Å, 5 μm, 4.6 mm × 250 mm) using a mixture of buffer, methanol and acetonitrile (42:27:31 v/v/v) as mobile phase. The buffer used in mobile phase contained 35 mM potassium dihydrogen phosphate, and its pH was adjusted to 7.0 ± 0.02 with 20% orthophosphoric acid. The instrument was set at flow rate of 1.2 mL min−1 at ambient temperature and the wavelength of UV-visible detector at 275 nm. The developed method could be suitable for the quantitative determination of these drugs in pharmaceutical preparations and also for quality control in bulk manufacturing. Stress testing was performed to prove the specificity. No interference was observed from its stress degradation products. The statistical analysis was done by using F-test and t-test at 95% confidence level.


2011 ◽  
Vol 8 (2) ◽  
pp. 483-490
Author(s):  
V. Srinivasan ◽  
H. Sivaramakrishnan ◽  
B. Karthikeyan

A simple, economic and time-efficient stability-indicating, reverse-phase high-performance liquid chromatographic (RP-HPLC) method has been developed for analysis of silver lactate in the presence of degradation products generated by decomposition. When silver lactate was subjected to acid hydrolysis, base hydrolysis, oxidative, photolytic, humidity and thermal stress, degradation was observed during base hydrolysis, oxidation, humidity and thermal stress. The drug was found to be stable to other stress conditions. Successful chromatographic condition of the drug from the degradation products formed under stress conditions was achieved on a phenomenex Gemini column with potassium dihydrogen phosphate buffer, pH adjusted to 2.2 with orthophosphoric acid, as mobile phase. The method was validated for linearity, precision, specificity and robustness and can be used for quality-control during manufacture and assessment of the stability of samples of silver lactate. To the best of our knowledge, a validated stability-indicating LC assay method for silver lactate based on lactic acid is reported for the first time.


2014 ◽  
Vol 2014 ◽  
pp. 1-9 ◽  
Author(s):  
S. Venkatesan ◽  
N. Kannappan ◽  
Sai Sandeep Mannemala

A simple, accurate, rapid, and stability-indicating RP-HPLC method for a combination of tenofovir disoproxil fumarate, emtricitabine, and rilpivirine has been developed and subsequently validated in commercial tablets. The proposed HPLC method utilizes Phenomenex Gemini C18 column (150 mm × 4.6 mm i.d., 5 µm) and mobile phase consisting of MeCN, potassium dihydrogen phosphate buffer (20 mM, pH 3.3), and triethylamine 58.72 : 41.23 : 0.05 (v/v) at a flow rate of 1.7 mL/min. Quantitation was achieved with UV detection at 270 nm. The method was validated in terms of accuracy, precision, linearity, limits of detection, limits of quantitation, and robustness. This optimized method has been successively applied to pharmaceutical formulation and no interference from the tablet excipients was found. TDF, EMT, and RPV and their combination drug product were subjected to acid, base, neutral hydrolysis, oxidation, dry heat, and photolytic stress conditions and the stressed samples were analyzed by the proposed method. As the proposed LC method could effectively separate the drugs from its degradation products, it can be employed as stability-indicating method for the determination of instability of these drugs in bulk and commercial tablets.


2012 ◽  
Vol 18 (1) ◽  
pp. 95-101 ◽  
Author(s):  
P.S. Jain ◽  
H.N. Jivani ◽  
R.N. Khatal ◽  
S.J. Surana

A novel stability-indicating high-performance liquid chromatographic assay method was developed and validated for quantitative determination of ciprofibrate in bulk drugs and in pharmaceutical dosage form in the presence of degradation products. An isocratic, reversed phase HPLC method was developed to separate the drug from the degradation products, using an Ace5-C18 (250?4.6 mm, 5 ?m) advance chromatography column, and methanol and water (90:10 v/v) as a mobile phase. The detection was carried out at a wavelength of 232 nm. The ciprofibrate was subjected to stress conditions of hydrolysis (acid, base), oxidation, photolysis and thermal degradation. Degradation was observed for ciprofibrate in base, in acid and in 30% H2O2. The drug was found to be stable in the other stress conditions attempted. The degradation products were well resolved from the main peak. The percentage recovery of ciprofibrate was from (98.65 to 100.01%) in the pharmaceutical dosage form. The developed method was validated with respect to linearity, accuracy (recovery), precision, system suitability, specificity and robustness. The forced degradation studies prove the stability indicating power of the method.


Author(s):  
K. Srinivasa Rao ◽  
Keshar N K ◽  
N Jena ◽  
M.E.B Rao ◽  
A K Patnaik

A stability-indicating LC assay method was developed for the quantitative determination of fenofibrate (FFB) in pharmaceutical dosage form in the presence of its degradation products and kinetic determinations were evaluated in acidic, alkaline and peroxide degradation conditions. Chromatographic separation was achieved by use of Zorbax C18 column (250 × 4.0 mm, 5 μm). The mobile phase was established by mixing phosphate buffer (pH adjusted 3 with phosphoric acid) and acetonitrile (30:70 v/v). FFB degraded in acidic, alkaline and hydrogen peroxide conditions, while it was more stable in thermal and photolytic conditions. The described method was linear over a range of 1.0-500 μg/ml for determination of FFB (r= 0.9999). The precision was demonstrated by relative standard deviation (RSD) of intra-day (RSD= 0.56– 0.91) and inter-day studies (RSD= 1.47). The mean recovery was found to be 100.01%. The acid and alkaline degradations of FFB in 1M HCl and 1M NaOH solutions showed an apparent zero-order kinetics with rate constants 0.0736 and 0.0698  min−1 respectively and the peroxide degradation with 5% H2O2 demonstrated an apparent first-order kinetics with rate constant k = 0.0202 per min. The t1/2, t90   values are also determined for all the kinetic studies. The developed method was found to be simple, specific, robust, linear, precise, and accurate for the determination of FFB in pharmaceutical formulations.  


2016 ◽  
Vol 8 (30) ◽  
pp. 5949-5956 ◽  
Author(s):  
Soumia Boulahlib ◽  
Ali Boudina ◽  
Kahina Si-Ahmed ◽  
Yassine Bessekhouad ◽  
Mohamed Trari

In this study, a rapid and simple method based on reversed-phase high performance liquid chromatography (RP-HPLC) using a photodiode array detector (PDA) for the simultaneous analysis of five pollutants including aniline and its degradation products, para-aminophenol, meta-aminophenol, ortho-aminophenol and phenol, was developed.


INDIAN DRUGS ◽  
2020 ◽  
Vol 57 (05) ◽  
pp. 56-64
Author(s):  
Rani A Prameela ◽  
S. Madhavi ◽  
Rao B. Tirumaleswara ◽  
Sudheer Reddy CH.

A novel Ultra Performance Liquid Chromatography (UPLC) method was developed and validated for the simultaneous determination of antidiabetic drugs metformin hydrochloride and nateglinide. The method was developed using a Waters ACQUITY UPLC SB C18 (100 × 2.1 mm, 1.8 μm) column. The mobile phase consisting of 0.01 % potassium dihydrogen phosphate buffer (pH 5.8): acetonitrile (50: 50 V/V) was used throughout the analysis. The flow rate was 0.3 mL/min, the injection volume was 1.0 μL, column temperature was 30 0C, run time 3 min and detection was carried at 238 nm using a TUV detector. The retention times of metformin hydrochloride and nateglinide were found to be 1.28 1.71 min, respectively. Metformin hydrochloride and nateglinide were found to be linear over the concentration range of 125-750 and 15-90 μg/mL. The limit of detection and the limit of quantification for metformin hydrochloride were found to be 0.22 and 0.68 μg/mL, respectively, and, for nateglinide, 0.02 and 0.6 μg/mL, respectively. Developed method was validated as per ICH guidelines. The specificity of the method was confirmed by forced degradation study. The suggested method is suitable for determination of metformin hydrochloride and nateglinide in bulk and pharmaceutical dosage forms.


Author(s):  
Krutika Patel ◽  
Sudheer Kumar Verriboina ◽  
S.G. Vasantharaju

A simple, accurate, specific and stability-indicating RP-HPLC method was developed for simultaneous determination of chlorzoxazone, diclofenac sodium and paracetamol, using C18 Vydac Monomeric 120A (250 × 4.6mm, 5μ) at 40ºC. The mobile phase contains a mixture of 20mM potassium dihydrogen phosphate buffer (pH 6.2 adjusted with potassium hydroxide) and acetonitrile (30:70 v/v). The flow rate was 1ml/min and detection was carried out at 275nm using PDA detector. The retention time of paracetamol, chlorzoxazone and diclofenac sodium were 3.28mins, 13.27mins and 15.61mins respectively. The analytical curve was linear over a concentration range of 0.65- 6.5μg/ml for paracetamol, 1-10μg/ml for chlorzoxazone and 0.1-1μg/ml for diclofenac sodium. The drugs in bulk and tablet were subjected to acid and alkali hydrolysis, oxidation, thermal and photolytic degradation. This method can be successfully employed for simultaneous quantitative analysis of Chlorzoxazone, Diclofenac sodium and Paracetamol in bulk drug and tablet formulation.


Sign in / Sign up

Export Citation Format

Share Document