scholarly journals RESEARCH ON THE PERFORMANCE OF POROUS CONCRETE PAVEMENT FOR THE EARLY OPENING UNDER THE TRAFFIC ENVIRONMENT OF LARGE VHEICLES

2019 ◽  
Vol 72 (1) ◽  
pp. 211-216
Author(s):  
Kento YAMAKADO ◽  
Futa KOJIMA ◽  
Takahiro TAMURA ◽  
Atsushi SHIMABUKURO
Author(s):  
Morihiro HARADA ◽  
Shigemitsu HATANAKA ◽  
Naoki MISHIMA ◽  
Shohei IIO

Author(s):  
P J Ramadhansyah ◽  
K A Masri ◽  
S A Mangi ◽  
M I Mohd Yusak ◽  
M R Hainin ◽  
...  

2018 ◽  
Vol 57 ◽  
pp. 01002
Author(s):  
Dong Liu ◽  
Xia Liu ◽  
Weiwei Han ◽  
Jing Chen

Permeable concrete pavement is a kind of porous road, which can allow rainwater to penetrate into the ground and maintain the recyclability of water resources. However, with constantly using, its voids may be blocked with the impurities in the rainwater, such as leaves, silt, etc. If that happens, the permeable function of the permeable concrete pavement will be affected. In this paper, the different structure of the permeable concrete pavement is studied, including the variation trend of the coefficient of permeability in the simulated plugging and the recovery rate of the permeable concrete pavement after cleaning and dredging. The results show that the upper small size coarse aggregate (4.75 mm to 9.5 mm) structure of the porous concrete is conducive to filter out most of the impurities, and it will reinforce the resistance to blocking of permeable concrete. But, it is not easy to recover after blockage, if the upper small size coarse aggregate is too thick. The anti-blocking performance and post-blocking recovery rate of permeable concrete are better, when the upper layer thickness is 15 mm.


2013 ◽  
Vol 368-370 ◽  
pp. 1985-1989
Author(s):  
Ya Min Liu ◽  
Rao Rao Han ◽  
Zhi Jin Tao ◽  
Jie Chen

In order to evaluate noise characteristic of concrete pavements with different texture, specimens were prepared carefully by varying groove parameters, such as groove width and space between grooves. Employing tire impact method, the noise level and noise spectrum of different pavements were analyzed. The results indicate that the noise level of transverse grooved concrete pavement is the greatest, and the followings are glossy concrete pavement and longitudinal grooved concrete pavement, porous concrete pavement has the lowest noise level. For grooved pavement, the noise level is promoted with increasing the space between grooves. Besides that, the noise level of transverse grooved concrete pavement becomes greater as the groove width increases. For longitudinal grooved pavement, there is a contrary tendency. It is porous concrete pavement for a frequency larger than 1600HZ. In the whole frequency range, the noise-reduction ability of transverse grooved concrete pavement is the worst.


1998 ◽  
Vol 3 ◽  
pp. 111-118
Author(s):  
Tosihiro TAKEI ◽  
Osamu KARASAWA ◽  
Teruhiko MARUYAMA

2015 ◽  
Vol 76 (14) ◽  
Author(s):  
Mohd Ibrahim Mohd Yusak ◽  
Ramadhansyah Putra Jaya ◽  
Mohd Rosli Hainin ◽  
Che Ros Ismail ◽  
Mohd Haziman Wan Ibrahim

Porous concrete pavement has been used in some countries as a solution to environmental problems. Contrary to conventional concrete pavement, there is still lack of knowledge in some areas of production and performance of porous concrete pavement. One of the issue concern is curing conditions. These greatly affect the performance of porous concrete pavement. This paper elaborates the experimental results examining the influence of curing method and makes a comparison between five different curing methods on the strength of porous concrete pavement specimens. The properties analyzed include compressive strength, tensile splitting strength and flexural strength. The experimental results indicate that the different curing methods give a different effect to concrete strength. Based on the results obtained in this experiment, curing method by using polyethylene bag promise a good result and better performance to porous concrete pavement specimen strength.


2015 ◽  
Vol 1113 ◽  
pp. 135-139 ◽  
Author(s):  
Mohd Yusak Mohd Ibrahim ◽  
Putra Jaya Ramadhansyah ◽  
Hainin Mohd Rosli ◽  
Mohd Haziman Wan Ibrahim ◽  
M.N. Fadzli

The high percentage of porosity in porous concrete pavement tends to decrease its strength. In concrete industry, nano silica is one of the most popular materials that will improve the properties of cementitious materials. This paper, prepared to review the effect of nano silica in cement paste and mortar related to porous concrete pavement. It was found that, by incorporating nano silica with the right composition in cement paste and mortar, it will improve their mechanical properties. By incorporating nano silica in the mixture, it can be predicted that the strengthening effect of nano silica would be further enhanced in porous concrete because the nano silica improve not only the cement paste, but also the interface between paste and aggregate.


2021 ◽  
Vol 28 (3) ◽  
pp. 48-60
Author(s):  
Mahdi Mahdi ◽  
Raad Irzooki ◽  
Mazin Abdulrahman

Rainwater harvesting and flood prevention in cities are significant urban hydrological concerns. The use of porous pavement is one of the most effective solutions to handle this matter. Thus, this study aims to develop Porous Interlocking Concrete Pavement (PICP) using recycled aggregate from concrete waste. This porous pavement, then later, can be utilized in low traffic areas and parking lots to harvest water by infiltration and reduce surface runoff. First, the physical properties of the porous concrete blocks, such as density (unit weight), absorption, coefficient of permeability, and porosity, were studied. Also, the mechanical properties of concrete mixtures like compressive strength and flexural strength were tested. This study used two types of PICP, the first one with ordinary coarse aggregate (P1) and the second with recycled crushed concrete coarse aggregate (P2), and then compared their performance to the conventional concrete pavement blocks used the two types of coarse aggregate (R1 and R2). The results show that the unit weight (density) of porous types was reduced by 25% and 26%, and the total porosity increases by around 2.4 times and 18 times respectively, as compared to conventional concrete pavement types. However, the compressive strength and flexural strength of porous concrete types decreased by (55% and 71%), respectively, compared to conventional types. Overall, the infiltration test results showed that the infiltrated water through porous concrete increased by about 83% in comparison to conventional concrete. From the results, utilizing porous concrete pavement can be considered a promising material in terms of water harvesting and decreasing rainwater flooding. Additionally, using recycled concrete can bring economical and environmental benefits.


2012 ◽  
Vol 10 (3) ◽  
pp. 231-240 ◽  
Author(s):  
Shigemitsu Hatanaka ◽  
Naoki Mishima ◽  
Takeshi Nakagawa ◽  
Hirotomo Morihana ◽  
Prinya Chindaprasirt

Sign in / Sign up

Export Citation Format

Share Document