scholarly journals DETERMINATION OF SIMPLE SUGARS IN MEDICINAL PLANT MATERIALS BY THE METHOD OF HIGH-PERFORMANCE THIN-LAYER CHROMATOGRAPHY (FOR EXAMPLE, THE FRUITS OF SEA BUCKTHORN L. AND NETTLE LEAVES L.)

2020 ◽  
pp. 215-222
Author(s):  
Ol'ga Valer'yevna Trineeva ◽  
Aleksey Ivanovich Slivkin

An analysis of the literature over the past 20 years has shown that when controlling the quality of drugs containing monosaccharides, as well as studying the composition of simple sugars in polysaccharide complexes of medicinal plants and not only, preference is given to physicochemical methods, as the most express, sensitive and informative. No means have been found in the scientific literature to identify and quantify simultaneously various monosaccharides by high performance thin layer chromatography (HPTLC). An economical and rapid method has been developed for the identification and quantitative determination of simple reducing sugars (by the example of glucose, rhamnose and xylose) by the HPTLC method. The optimal conditions for their chromatography in a thin layer of sorbent with a quantitative interpretation of HPTLC data on a personal computer were experimentally selected and theoretically substantiated. In a detailed study of the influence of the polarity of the system on the value of Rf, the intervals of values of the polarity of the eluent were chosen, in which these dependences become linear. Using the proposed dependencies, you can select different systems for the separation of monosaccharides in a thin layer of sorbent, so that the value of Rf fit into the optimal values. The proposed method was tested on medicinal plant raw materials of nettle dioica and sea buckthorn fruits of various conservation methods. Zones of simple sugars of characteristic color were found on the chromatograms of extracts from the studied raw materials, among which glucose, xylose and rhamnose were identified by the characteristic value of Rf values in comparison with reliable standard samples. The technique can be used in quality control of substances, single-component and complex preparations, plant objects, dietary supplements, premixes and products of the food industry.

2006 ◽  
Vol 89 (1) ◽  
pp. 1-7 ◽  
Author(s):  
Andrés Navarrete ◽  
Bharathi Avula ◽  
Vaishali C Joshi ◽  
Xiuhong Ji ◽  
Paul Hersh ◽  
...  

Abstract Amphiptherygium adstringens (Anacardiaceae/Julianaceae), local name cuachalalate, is used in folk medicine for the treatment of cholelithiasis, fevers, fresh wounds, hypercholesterolemia, gastritis, gastric ulcers, and cancer of the gastrointestinal tract. The development of column high-performance liquid chromatographyphotodiode array detector (LC-PDA) and high-performance thin-layer chromatography (HPTLC)densitometry methods for the determination of masticadienonic acid and 3-hydroxymasticadienonic acid in cuachalalate preparations is described in this paper. Good separation of the compounds could be achieved by both methods. Either might be preparable depending on the requirements. The LC separation was performed on a Phenomenex Synergi MAX-RP 80A reversed-phase column operated at 40C with detection at 215 nm. The plant materials were extracted with methanol by sonication. The triterpenes present in the plant material and commercial extracts were separated with an acetonitrilewater reagent alcohol isocratic system. The limit of detection was 0.10.2 g/mL. The relative standard deviation values for the determination of triterpenes in plant extracts were less than 1.00%. This is the first report of an analytical method developed for the quantitative analysis of triterpenes from Amphiptherygium adstringens by LC-PDA and HPTLC. The stem bark showed higher amounts of triterpenes, and low amounts in root and stem root. The microscopic description of the crude drug of cuachalalate was also provided.


2020 ◽  
Vol 16 (6) ◽  
pp. 671-689
Author(s):  
Marcin Gackowski ◽  
Marcin Koba ◽  
Katarzyna Mądra-Gackowska ◽  
Piotr Kośliński ◽  
Stefan Kruszewski

At present, no one can imagine drug development, marketing and post-marketing without rigorous quality control at each stage. Only modern, selective, accurate and precise analytical methods for determination of active compounds, their degradation products and stability studies are able to assure the appropriate amount and purity of drugs administered every day to millions of patients all over the world. For routine control of drugs simple, economic, rapid and reliable methods are desirable. The major focus of current scrutiny is placed on high-performance thin layer chromatography and derivative spectrophotometry methods, which fulfill routine drug estimation’s expectations [1-4]. The present paper reveals state-of-the-art and possible applications of those methods in pharmaceutical analysis between 2010 and 2018. The review shows advantages of high-performance thin layer chromatography and derivative spectrophotometry, including accuracy and precision comparable to more expensive and time-consuming methods as well as additional fields of possible applications, which contribute to resolving many analytical problems in everyday laboratory practice.


Author(s):  
Kamran Ashraf ◽  
Syed Adnan Ali Shah ◽  
Mohd Mujeeb

<p><strong>Objective: </strong>A simple, sensitive, precise, and accurate stability indicating HPTLC (high-performance thin-layer chromatography) method for analysis of 10-gingerol in ginger has been developed and validated as perICH guidelines.</p><p><strong>Methods: </strong>The separation was achieved on TLC (thin layer chromatography) aluminum plates pre-coated with silica gel 60F<sub>254</sub> using n-hexane: ethyl acetate 55:45 (%, v/v) as a mobile phase. Densitometric analysis was performed at 569 nm.</p><p><strong>Results: </strong>This system was found to have a compact spot of 10-gingerol at <em>R</em><sub>F</sub> value of 0.57±0.03. For the proposed procedure, linearity (<em>r</em><sup>2</sup> = 0.998±0.02), limit of detection (18ng/spot), limit of quantification (42 ng/spot), recovery (ranging from 98.35%–100.68%), were found to be satisfactory.</p><p><strong>Conclusion: </strong>Statistical analysis reveals that the content of 10-gingerol in different geographical region varied significantly. The highest and lowest concentration of 10-gingerol in ginger was found to be present in a sample of Patna, Lucknow and Surat respectively which inferred that the variety of ginger found in Patna, Lucknow are much superior to other regions of India.</p>


Sign in / Sign up

Export Citation Format

Share Document