The role of calcium transport in the extreme acid tolerance of northern banjo frog larvae (Limnodynastes terraereginae)

UQ eSpace ◽  
2021 ◽  
Author(s):  
Coen Hird ◽  
Rebecca Cramp ◽  
Craig Franklin
2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Gabriella Boisen ◽  
Julia R. Davies ◽  
Jessica Neilands

Abstract Background In caries, low pH drives selection and enrichment of acidogenic and aciduric bacteria in oral biofilms, and development of acid tolerance in early colonizers is thought to play a key role in this shift. Since previous studies have focussed on planktonic cells, the effect of biofilm growth as well as the role of a salivary pellicle on this process is largely unknown. We explored acid tolerance and acid tolerance response (ATR) induction in biofilm cells of both clinical and laboratory strains of three oral streptococcal species (Streptococcus gordonii, Streptococcus oralis and Streptococcus mutans) as well as two oral species of Actinomyces (A. naeslundii and A. odontolyticus) and examined the role of salivary proteins in acid tolerance development. Methods Biofilms were formed on surfaces in Ibidi® mini flow cells with or without a coating of salivary proteins and acid tolerance assessed by exposing them to a challenge known to kill non-acid tolerant cells (pH 3.5 for 30 min) followed by staining with LIVE/DEAD BacLight and confocal scanning laser microscopy. The ability to induce an ATR was assessed by exposing the biofilms to an adaptation pH (pH 5.5) for 2 hours prior to the low pH challenge. Results Biofilm formation significantly increased acid tolerance in all the clinical streptococcal strains (P < 0.05) whereas the laboratory strains varied in their response. In biofilms, S. oralis was much more acid tolerant than S. gordonii or S. mutans. A. naeslundii showed a significant increase in acid tolerance in biofilms compared to planktonic cells (P < 0.001) which was not seen for A. odontolyticus. All strains except S. oralis induced an ATR after pre-exposure to pH 5.5 (P < 0.05). The presence of a salivary pellicle enhanced both acid tolerance development and ATR induction in S. gordonii biofilms (P < 0.05) but did not affect the other bacteria to the same extent. Conclusions These findings suggest that factors such as surface contact, the presence of a salivary pellicle and sensing of environmental pH can contribute to the development of high levels of acid tolerance amongst early colonizers in oral biofilms which may be important in the initiation of caries.


FEBS Letters ◽  
1980 ◽  
Vol 119 (1) ◽  
pp. 1-8 ◽  
Author(s):  
Richard M. Denton ◽  
James G. McCormack

1980 ◽  
Vol 238 (5) ◽  
pp. G424-G428
Author(s):  
H. Schiffl ◽  
U. Binswanger

Calcium ATPase, an enzyme involved in intestinal calcium transport, was measured in homogenates of duodenal mucosal scrapings of normal and uremic rats. The effects of calcium deprivation and treatment with 1 alpha,25-dihydroxycholecalciferol [1,25-(OH)2D3] were investigated as well. Uremia decreased the enzyme activity and impaired the rise after calcium deprivation as observed in intact rats. The 1,25-(OH)2D3 treatment increased the enzyme activity in uremic animals and resulted in an identical response to calcium deprivation as observed in intact rats; parathyroidectomy abolished this effect. A striking correlation between everted duodenal gut sac calcium transport and calcium ATPase activity could be demonstrated for all groups of rats studied. It is concluded that the calcium ATPase activity is linked to the production of 1,25-(OH)2D3 as well as to an additional factor, probably parathyroid hormone. The close relationship between enzyme activity and in vitro calcium transport, even during constant physiological supplementation with 1,25-(OH)2D3, suggests an autonomous role of the calcium ATPase activity for mediation of calcium transport in the duodenum in addition to the well-known mechanisms related to vitamin D and its metabolites.


2020 ◽  
Vol 65 (12) ◽  
pp. 3502-3513 ◽  
Author(s):  
Xubiao Nie ◽  
Hai Jin ◽  
Guorong Wen ◽  
Jingyu Xu ◽  
Jiaxing An ◽  
...  

1978 ◽  
Vol 77 (3) ◽  
pp. 743-751 ◽  
Author(s):  
RS Tuan ◽  
WA Scott ◽  
ZA Cohn

The preparation of a specific antiserum (anti-CaBP) against the calcium-binding protein (CaBP) of the chorioallantoic membrane (CAM) is described. The anti-CaBP appeared to be specific for the CaBP by immunodiffusion and immunoelectrophoresis. Application of the anti-CaBP in immunofluorescence histochemistry revealed that the CaBP is present in the CAM only at developmental ages corresponding with the expression of the calcium transport function of the membrane. Furthermore, the CaBP is localized to the ectoderm of the CAM, appears to be exposed to the entire external surface of the ectoderm, and can be shown to be associated with cells enzymatically dissociated from the CAM. These results are consistent with a functional role of the CaBP in the CAM calcium transport process.


2011 ◽  
Vol 10 (5) ◽  
pp. 654-661 ◽  
Author(s):  
Barry J. Bowman ◽  
Stephen Abreu ◽  
Emilio Margolles-Clark ◽  
Marija Draskovic ◽  
Emma Jean Bowman

ABSTRACTWe have examined the distribution of calcium inNeurospora crassaand investigated the role of four predicted calcium transport proteins. The results of cell fractionation experiments showed 4% of cellular calcium in mitochondria, approximately 11% in a dense vacuolar fraction, 40% in an insoluble form that copurifies with microsomes, and 40% in a high-speed supernatant, presumably from large vacuoles that had broken. Strains lacking NCA-1, a SERCA-type Ca2+-ATPase, or NCA-3, a PMC-type Ca2+-ATPase, had no obvious defects in growth or distribution of calcium. A strain lacking NCA-2, which is also a PMC-type Ca2+-ATPase, grew slowly in normal medium and was unable to grow in high concentrations of calcium tolerated by the wild type. Furthermore, when grown in normal concentrations of calcium (0.68 mM), this strain accumulated 4- to 10-fold more calcium than other strains, elevated in all cell fractions. The data suggest that NCA-2 functions in the plasma membrane to pump calcium out of the cell. In this way, it resembles the PMC-type enzymes of animal cells, not the Pmc1p enzyme inSaccharomyces cerevisiaethat resides in the vacuole. Strains lacking thecaxgene, which encodes a Ca2+/H+exchange protein in vacuolar membranes, accumulate very little calcium in the dense vacuolar fraction but have normal levels of calcium in other fractions. Thecaxknockout strain has no other observable phenotypes. These data suggest that “the vacuole” is heterogeneous and that the dense vacuolar fraction contains an organelle that is dependent upon the CAX transporter for accumulation of calcium, while other components of the vacuolar system have multiple calcium transporters.


1977 ◽  
Vol 232 (3) ◽  
pp. E336
Author(s):  
J T Pento ◽  
L C Waite ◽  
P J Tracy ◽  
A D Kenny

The role of parathyroid hormone (PTH) in the adaptive response in gut calcium transport to calcium deprivation has been studied in the rat using both the in vitro everted duodenal sac and the in situ ligated duodenal segment technique. Intact or parathyroidectomized (PTX) young rats were placed on a low calcium (0.01%) diet for 7-, 14-, or 21-day adaptation periods and compared with control rats maintained on a high calcium (1.5%) diet. Prior PTX (3 days before the start of the adaptation period) abolished the adaptive response (enhanced calcium transport) induced by calcium deprivation for a 7-day adaptation period, but did not abolish a response after a 21-day period. A 14-day adaptation period gave equivocal results. It is concluded that PTH appears to be necessary for short-term (7-day) adaptation, but not for long-term (21-day) adaptation to calcium deprivation. However, if accessory parathyroid tissue is present, the data could be interpreted differently: the essentiality of PTH for the adaptive response might be independent of the length of the adaptation period. The data also contribute to a possible resolution of the controversy concerning the involvement of PTH in the regulation of intestinal calcium transport in the rat.


Sign in / Sign up

Export Citation Format

Share Document