Identification and characterization of genetic variants in an Australian autism spectrum disorder cohort

2016 ◽  
Author(s):  
Joon-Yong An
PLoS ONE ◽  
2014 ◽  
Vol 9 (10) ◽  
pp. e109872 ◽  
Author(s):  
Manoj Kumar ◽  
Jeffery T. Duda ◽  
Wei-Ting Hwang ◽  
Charles Kenworthy ◽  
Ranjit Ittyerah ◽  
...  

2016 ◽  
Vol 19 (11) ◽  
pp. 1454-1462 ◽  
Author(s):  
Arjun Krishnan ◽  
Ran Zhang ◽  
Victoria Yao ◽  
Chandra L Theesfeld ◽  
Aaron K Wong ◽  
...  

2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Hidekazu Kato ◽  
Itaru Kushima ◽  
Daisuke Mori ◽  
Akira Yoshimi ◽  
Branko Aleksic ◽  
...  

AbstractDysregulation of epigenetic processes involving histone methylation induces neurodevelopmental impairments and has been implicated in schizophrenia (SCZ) and autism spectrum disorder (ASD). Variants in the gene encoding lysine demethylase 4C (KDM4C) have been suggested to confer a risk for such disorders. However, rare genetic variants in KDM4C have not been fully evaluated, and the functional impact of the variants has not been studied using patient-derived cells. In this study, we conducted copy number variant (CNV) analysis in a Japanese sample set (2605 SCZ and 1141 ASD cases, and 2310 controls). We found evidence for significant associations between CNVs in KDM4C and SCZ (p = 0.003) and ASD (p = 0.04). We also observed a significant association between deletions in KDM4C and SCZ (corrected p = 0.04). Next, to explore the contribution of single nucleotide variants in KDM4C, we sequenced the coding exons in a second sample set (370 SCZ and 192 ASD cases) and detected 18 rare missense variants, including p.D160N within the JmjC domain of KDM4C. We, then, performed association analysis for p.D160N in a third sample set (1751 SCZ and 377 ASD cases, and 2276 controls), but did not find a statistical association with these disorders. Immunoblotting analysis using lymphoblastoid cell lines from a case with KDM4C deletion revealed reduced KDM4C protein expression and altered histone methylation patterns. In conclusion, this study strengthens the evidence for associations between KDM4C CNVs and these two disorders and for their potential functional effect on histone methylation patterns.


F1000Research ◽  
2018 ◽  
Vol 7 ◽  
pp. 627 ◽  
Author(s):  
Fatma Ayhan ◽  
Genevieve Konopka

Autism spectrum disorder (ASD) is a highly prevalent neurodevelopmental condition with no current treatment available. Although advances in genetics and genomics have identified hundreds of genes associated with ASD, very little is known about the pathophysiology of ASD and the functional contribution of specific genes to ASD phenotypes. Improved understanding of the biological function of ASD-associated genes and how this heterogeneous group of genetic variants leads to the disease is needed in order to develop therapeutic strategies. Here, we review the current state of ASD research related to gene discovery and examples of emerging molecular mechanisms (protein translation and alternative splicing). In addition, we discuss how patient-derived three-dimensional brain organoids might provide an opportunity to model specific genetic variants in order to define molecular and cellular defects that could be amenable for developing and screening personalized therapies related to ASD.


2019 ◽  
Vol 32 (3) ◽  
pp. 461-471 ◽  
Author(s):  
Benjamin R. Morgan ◽  
George M. Ibrahim ◽  
Vanessa M. Vogan ◽  
Rachel C. Leung ◽  
Wayne Lee ◽  
...  

2013 ◽  
Vol 93 (2) ◽  
pp. 249-263 ◽  
Author(s):  
Yong-hui Jiang ◽  
Ryan K.C. Yuen ◽  
Xin Jin ◽  
Mingbang Wang ◽  
Nong Chen ◽  
...  

2011 ◽  
Vol 20 (3) ◽  
pp. 524-527 ◽  
Author(s):  
Muneaki Matsuo ◽  
Toshiyuki Maeda ◽  
Kiyohisa Ishii ◽  
Daisuke Tajima ◽  
Masahiro Koga ◽  
...  

2014 ◽  
Vol 23 (24) ◽  
pp. 6495-6511 ◽  
Author(s):  
Chie Shimamoto ◽  
Tetsuo Ohnishi ◽  
Motoko Maekawa ◽  
Akiko Watanabe ◽  
Hisako Ohba ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document