scholarly journals Phosphorylation Dependent Sequestration Of Protein Phosphatase-1 I (PP-1 I) By Protein 14-3-3

Author(s):  
H.Y. Lim Tung

PP-1 is involved in the control of the meiotic and mitotic cell divisions at the G2 to M transition by dephosphorylating phospho-serine 217 (phospho-serine 287 in Xenopus) of Cdc25, accompanied by activation of Cdc25 which would then dephosphorylate and activate Cdk1 . PP-1I has been proposed to be the form of PP-1 that dephosphorylates and activates Cdc25. Here we show that PP-1I is sequestered in a phosphorylation dependent manner by protein 14-3-3 involving phosphorylation of serine 71 of I-2 moiety of PP-1I by C-TAK1. Phosphorylation of serine 71 of the I-2 moiety of PP-1I by C-TAK1 enhanced the sequestration and inhibition of PP-1I by Protein 14-3-3. Phosphorylation of serine 71 of the I-2 moiety of PP-1I caused an increase in the Stability Energy, Binding Energy of the interaction between PP-1I and Protein 14-3-3 and a significant decrease in the IC50 of the inhibition of PP-1I by Protein 14-3-3. PP-1I regulation by C-TAK1 and Protein 14-3-3 is a mechanism for the control of Cdc25 at the G2 to M transition of the cell cycle.

2000 ◽  
Vol 149 (1) ◽  
pp. 125-140 ◽  
Author(s):  
Andrew Bloecher ◽  
Kelly Tatchell

Protein phosphatase type I (PP1), encoded by the single essential gene GLC7 in Saccharomyces cerevisiae, functions in diverse cellular processes. To identify in vivo subcellular location(s) where these processes take place, we used a functional green fluorescent protein (GFP)–Glc7p fusion protein. Time-lapse fluorescence microscopy revealed GFP–Glc7p localizes predominantly in the nucleus throughout the mitotic cell cycle, with the highest concentrations in the nucleolus. GFP–Glc7p was also observed in a ring at the bud neck, which was dependent upon functional septins. Supporting a role for Glc7p in bud site selection, a glc7-129 mutant displayed a random budding pattern. In α-factor treated cells, GFP–Glc7p was located at the base of mating projections, again in a septin-dependent manner. At the start of anaphase, GFP–Glc7p accumulated at the spindle pole bodies and remained there until cytokinesis. After anaphase, GFP–Glc7p became concentrated in a ring that colocalized with the actomyosin ring. A GFP–Glc7-129 fusion was defective in localizing to the bud neck and SPBs. Together, these results identify sites of Glc7p function and suggest Glc7p activity is regulated through dynamic changes in its location.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Diego Velázquez ◽  
Marcel Albacar ◽  
Chunyi Zhang ◽  
Carlos Calafí ◽  
María López-Malo ◽  
...  

Abstract Control of the protein phosphorylation status is a major mechanism for regulation of cellular processes, and its alteration often lead to functional disorders. Ppz1, a protein phosphatase only found in fungi, is the most toxic protein when overexpressed in Saccharomyces cerevisiae. To investigate the molecular basis of this phenomenon, we carried out combined genome-wide transcriptomic and phosphoproteomic analyses. We have found that Ppz1 overexpression causes major changes in gene expression, affecting ~ 20% of the genome, together with oxidative stress and increase in total adenylate pools. Concurrently, we observe changes in the phosphorylation pattern of near 400 proteins (mainly dephosphorylated), including many proteins involved in mitotic cell cycle and bud emergence, rapid dephosphorylation of Snf1 and its downstream transcription factor Mig1, and phosphorylation of Hog1 and its downstream transcription factor Sko1. Deletion of HOG1 attenuates the growth defect of Ppz1-overexpressing cells, while that of SKO1 aggravates it. Our results demonstrate that Ppz1 overexpression has a widespread impact in the yeast cells and reveals new aspects of the regulation of the cell cycle.


2008 ◽  
Vol 7 (3) ◽  
pp. 1352-1352
Author(s):  
Guillermo Flores-Delgado ◽  
Cathy W. Y. Liu ◽  
Richard Sposto ◽  
Norbert Berndt

2009 ◽  
Vol 29 (18) ◽  
pp. 4891-4905 ◽  
Author(s):  
Santhi Pondugula ◽  
Daniel W. Neef ◽  
Warren P. Voth ◽  
Russell P. Darst ◽  
Archana Dhasarathy ◽  
...  

ABSTRACT Cells devote considerable resources to nutrient homeostasis, involving nutrient surveillance, acquisition, and storage at physiologically relevant concentrations. Many Saccharomyces cerevisiae transcripts coding for proteins with nutrient uptake functions exhibit peak periodic accumulation during M phase, indicating that an important aspect of nutrient homeostasis involves transcriptional regulation. Inorganic phosphate is a central macronutrient that we have previously shown oscillates inversely with mitotic activation of PHO5. The mechanism of this periodic cell cycle expression remains unknown. To date, only two sequence-specific activators, Pho4 and Pho2, were known to induce PHO5 transcription. We provide here evidence that Mcm1, a MADS-box protein, is essential for PHO5 mitotic activation. In addition, we found that cells simultaneously lacking the forkhead proteins, Fkh1 and Fkh2, exhibited a 2.5-fold decrease in PHO5 expression. The Mcm1-Fkh2 complex, first shown to transactivate genes within the CLB2 cluster that drive G2/M progression, also associated directly at the PHO5 promoter in a cell cycle-dependent manner in chromatin immunoprecipitation assays. Sds3, a component specific to the Rpd3L histone deacetylase complex, was also recruited to PHO5 in G1. These findings provide (i) further mechanistic insight into PHO5 mitotic activation, (ii) demonstrate that Mcm1-Fkh2 can function combinatorially with other activators to yield late M/G1 induction, and (iii) couple the mitotic cell cycle progression machinery to cellular phosphate homeostasis.


2008 ◽  
Vol 181 (2) ◽  
pp. 241-254 ◽  
Author(s):  
Michael J. Emanuele ◽  
Weijie Lan ◽  
Miri Jwa ◽  
Stephanie A. Miller ◽  
Clarence S.M. Chan ◽  
...  

The outer kinetochore binds microtubules to control chromosome movement. Outer kinetochore assembly is restricted to mitosis, whereas the inner kinetochore remains tethered to centromeres throughout the cell cycle. The cues that regulate this transient assembly are unknown. We find that inhibition of Aurora B kinase significantly reduces outer kinetochore assembly in Xenopus laevis and human tissue culture cells, frog egg extracts, and budding yeast. In X. leavis M phase extracts, preassembled kinetochores disassemble after inhibiting Aurora B activity with either drugs or antibodies. Kinetochore disassembly, induced by Aurora B inhibition, is rescued by restraining protein phosphatase 1 (PP1) activity. PP1 is necessary for kinetochores to disassemble at the exit from M phase, and purified enzyme is sufficient to cause disassembly on isolated mitotic nuclei. These data demonstrate that Aurora B activity is required for kinetochore maintenance and that PP1 is necessary and sufficient to disassemble kinetochores. We suggest that Aurora B and PP1 coordinate cell cycle–dependent changes in kinetochore assembly though phosphorylation of kinetochore substrates.


Development ◽  
1999 ◽  
Vol 126 (10) ◽  
pp. 2227-2239 ◽  
Author(s):  
M. Boxem ◽  
D.G. Srinivasan ◽  
S. van den Heuvel

We have identified six protein kinases that belong to the family of cdc2-related kinases in Caenorhabditis elegans. Results from RNA interference experiments indicate that at least one of these kinases is required for cell-cycle progression during meiosis and mitosis. This kinase, encoded by the ncc-1 gene, is closely related to human Cdk1/Cdc2, Cdk2 and Cdk3 and yeast CDC28/cdc2(+). We addressed whether ncc-1 acts to promote passage through a single transition or multiple transitions in the cell cycle, analogous to Cdks in vertebrates or yeasts, respectively. We isolated five recessive ncc-1 mutations in a genetic screen for mutants that resemble larval arrested ncc-1(RNAi) animals. Our results indicate that maternal ncc-1 product is sufficient for embryogenesis, and that zygotic expression is required for cell divisions during larval development. Cells that form the postembryonic lineages in wild-type animals do not enter mitosis in ncc-1 mutants, as indicated by lack of chromosome condensation and nuclear envelope breakdown. However, progression through G1 and S phase appears unaffected, as revealed by expression of ribonucleotide reductase, incorporation of BrdU and DNA quantitation. Our results indicate that C. elegans uses multiple Cdks to regulate cell-cycle transitions and that ncc-1 is the C. elegans ortholog of Cdk1/Cdc2 in other metazoans, required for M phase in meiotic as well as mitotic cell cycles.


Sign in / Sign up

Export Citation Format

Share Document