scholarly journals Determining the Magnitude of Wind Loads on Structures in Kenya according to the Eurocodes

Author(s):  
Muthomi Munyua

This study provided guidance on the use of existing wind data in Kenya with the Eurocodes despite the absence of the local national annexes. The determination of wind loads in the structural design of buildings according to the Eurocode Standard KS EN 1991-1-4:2005 had several challenges. The code of practice commonly used in Kenya was CP3-Chapter V-2:1972 that used the three-second gust duration. This gust duration resulted in higher magnitudes of wind loads that ended up making the structures unnecessarily robust and uneconomical. Using the Eurocodes had the promise of achieving more economical designs because it used the 10-minute gust duration. The 10-minute gust duration resulted in typically lower magnitudes of wind loads than the three-second gust duration for the same wind speed. Kenya adopted the Eurocodes in September 2012 but had not yet developed its national annexes opting instead to use the UK National Annexes. The UK National Annexes were applicable to Kenya in some scenarios but not in others such as wind loading. The lack of the Kenya National Annexes led to difficulties in the adoption of the Eurocodes. This paper outlined a procedure in which the existing wind data given in three-second gusts could be converted to 10-minute wind speeds. Once converted, the method described in the UK National Annex could then be followed selectively to determine the wind load on a structure. Lastly, the paper recommended that wind data collected from 1977 to 2021 by the Kenya Meteorological Department be incorporated to the development of the wind map for the Kenya National Annex to KS EN 1991-1-4:2005.

Author(s):  
Muthomi Munyua

This paper provides guidance on the use of existing wind data in Kenya with the Eurocodes despite the absence of the local national annexes. The determination of wind loads in the structural design of buildings according to the Eurocode Standard KS EN 1991-1-4:2005 in Kenya is challenging because of the lack of the Kenya National Annex. The design code commonly used in Kenya is CP3-Chapter V-2:1972 that uses the three-second gust duration. This gust duration results in higher magnitudes of wind loads that end up making the structures unnecessarily robust and uneconomical. Using the Eurocodes has the promise of achieving more economical designs because it uses the 10-minute gust duration. The 10-minute gust duration results in typically lower magnitudes of wind loads than the three-second gust duration for the same wind speed. Kenya adopted the Eurocodes in September 2012 but has not yet developed its national annexes opting instead to use the UK National Annexes. The UK National Annexes are applicable to Kenya in some scenarios but not in others such as wind loading. The lack of the Kenya National Annexes has led to difficulties in the adoption of the Eurocodes. This paper outlines a procedure in which the existing wind data given in three-second gusts could be converted to 10-minute wind speeds. Once converted, the method described in the UK National Annex could then be followed selectively to determine the wind load on a structure. Lastly, the paper recommends that wind data collected from 1977 to 2021 by the Kenya Meteorological Department be incorporated to the development of the wind map for the Kenya National Annex to KS EN 1991-1-4:2005


2014 ◽  
Vol 986-987 ◽  
pp. 235-238
Author(s):  
Xiao Long Tan ◽  
Jia Zhou ◽  
Wen Bin Wang

For the simulation of wind turbine, the wind speed is extremely important parameters and indicators to measure the output power of the unit is the wind load. Therefore, in the airflow dynamics and simulation of wind loads before establishing an accurate wind speed model is crucial. At present, the application for wind turbines COMSOL fan, fan blades and wind load simulation field, the extremely important wind speed model is not perfect, most of the research is confined to a single constant wind speed, wind speed virtually ignored the magnitude and direction of change, on changes over time and space at the same time is one of the few studies of wind, so find a way to accurately describe the range of wind speeds, and can be combined well with COMSOL method can greatly improve the aerodynamic performance of wind turbines the overall level of .


Author(s):  
M. T. Stickland ◽  
T. J. Scanlon ◽  
I. A. Craighead ◽  
J Fernandez

Measurement of the damped oscillation of a section of the UK East Coast Main Line (ECML) catenary/contact wire system was undertaken, and the natural frequency and mechanical damping were found to be 1.4Hz and 0.05 respectively. This information was used to assess the effect of increasing the mechanical damping ratio on the susceptibility of the system to an aerodynamic galloping instability. The section of line tested was known to gallop at wind speeds of approximately 40 mile/h, and theoretical and experimental work verified this. A friction damper arm was designed and three units were fitted to the section of line affected. The introduction of increased mechanical damping was found to raise the mechanical damping coefficient of the line to between 0.095 and 0.18, and the mathematical analysis produced a theoretical wind speed for galloping oscillation of between 75 and 141 mile/h respectively. For over a year since the units were fitted, no problems with galloping instability have been observed.


2020 ◽  
Vol 2 (2) ◽  
pp. 80-88
Author(s):  
Waluyo Waluyo ◽  
Meli Ruslinar

The microcontroller is one technology that is developing so rapidly with various types and functions, one of which is Arduino Uno which can be used as a microcontroller for various functions in the field of electronics technology. This research was conducted at the Laboratory of Ocean Engineering Modeling, Marine and Fisheries Polytechnic of Karawang in March-June 2020. The purpose of this study was to create a microcontroller-based sea surface wind speed measuring instrument. Based on the results of the acquisition of wind data using a fan simulation and natural wind gusts with different wind speeds in the field show a significant tool response. The results of the comparison of data recording between the results of research with the existing wind speed measuring instrument show that there is an average tool error of 3.24%, a relative error of 3.78%, and an instrument accuracy rate of 96.76%. Thus it can be said that the ability of the tool is able to record wind data with high accuracy.


1986 ◽  
Vol 13 (3) ◽  
pp. 375-381
Author(s):  
Ronald A. Macnaughton

This paper contains a wind load and resistance analysis for a type of structure that has frequently failed: partially built houses. The critical component of such structures is identified to be the first-storey shearwalls running across the house. The calculated racking strength of that storey is compared to the wind loading the structure would be expected to resist if it were engineered. Various methods are proposed for builders to provide these structures with more wind resistance during the early stages of construction. Differences between Canadian codes and codes in other jurisdictions with respect to this are pointed out. Key words: wind loads, houses, failure, wind bracing, temporary bracing, shearwalls, fibreboard, sheathing, permanent bracing, racking strength, construction procedures, nailing, building code.


1985 ◽  
Vol 107 (1) ◽  
pp. 10-14 ◽  
Author(s):  
A. S. Mikhail

Various models that are used for height extrapolation of short and long-term averaged wind speeds are discussed. Hourly averaged data from three tall meteorological towers (the NOAA Erie Tower in Colorado, the Battelle Goodnoe Hills Tower in Washington, and the WKY-TV Tower in Oklahoma), together with data from 17 candidate sites (selected for possible installation of large WECS), were used to analyze the variability of short-term average wind shear with atmospheric and surface parameters and the variability of the long-term Weibull distribution parameter with height. The exponents of a power-law model, fit to the wind speed profiles at the three meteorological towers, showed the same variability with anemometer level wind speed, stability, and surface roughness as the similarity law model. Of the four models representing short-term wind data extrapolation with height (1/7 power law, logarithmic law, power law, and modified power law), the modified power law gives the minimum rms for all candidate sites for short-term average wind speeds and the mean cube of the speed. The modified power-law model was also able to predict the upper-level scale factor for the WKY-TV and Goodnoe Hills Tower data with greater accuracy. All models were not successful in extrapolation of the Weibull shape factors.


2017 ◽  
Vol 18 (2) ◽  
pp. 335-348 ◽  
Author(s):  
Adam Winstral ◽  
Tobias Jonas ◽  
Nora Helbig

Abstract Winds, particularly high winds, strongly affect snowmelt and snow redistribution. High winds during rain-on-snow events can lead to catastrophic flooding while strong redistribution events in mountain environments can generate dangerous avalanche conditions. To provide adequate warnings, accurate wind data are required. Yet, mountain wind fields exhibit a high degree of heterogeneity at small spatial lengths that are not resolved by currently available gridded forecast data. Wind data from over 200 stations across Switzerland were used to evaluate two forecast surface wind products (~2- and 7-km horizontal resolution) and develop a statistical downscaling technique to capture these finer-scaled heterogeneities. Wind exposure metrics derived from a 25-m horizontal resolution digital elevation model effectively segregated high, moderate, and low wind speed sites. Forecast performance was markedly compromised and biased low at the exposed sites and biased high at the sheltered, valley sites. It was also found that the variability of predicted wind speeds at these sites did not accurately represent the observed variability. A novel optimization scheme that accounted for local terrain structure while also nudging the forecasted distributions to better match the observed distributions and variability was developed. The resultant statistical downscaling technique notably decreased biases across a range of elevations and exposures and provided a better match to observed wind speed distributions.


2020 ◽  
Author(s):  
Christian Behnken ◽  
Matthias Wächter ◽  
Joachim Peinke

Abstract. The most intermittent behavior of atmospheric turbulence is found for very short time scales. Based on a concatenation of conditional probability density functions (cpdfs) of nested wind speeds increments, inspired by a Markov process in scale, we derive a short-time predictor for wind speed fluctuations around a non-stationary mean value and with a corresponding non-stationary variance. As a new quality this short time predictor enables a multipoint reconstruction of wind data. The used cpdfs are (1) directly estimated from historical data from the offshore research platform FINO1 and (2) obtained from numerical solutions of a family of Fokker-Planck equations in the scale domain. The explicit forms of the Fokker-Planck equations are estimated from the given wind data. A good agreement between the statistics of the generated synthetic wind speed fluctuations and the measured is found even on time scales below 1 s. This shows that our approach captures the short-time dynamics of real wind speed fluctuations very well. Our method is extended by taking the non-stationarity of the mean wind speed and its non-stationary variance into account.


2018 ◽  
Vol 6 (1) ◽  
pp. 18
Author(s):  
Boluwaji Olomiyesan

In this study, the predictive ability of two-parameter Weibull distribution function in analyzing wind speed data was assessed in two selected sites with different mean wind speeds in the North-Western region of Nigeria. Twenty-two years wind speed data spanning from 1984 to 2005 was used in the analysis. The data were obtained from the Nigerian Meteorological Agency (NIMET) in Lagos. The results of the analysis show that Weibull function is suitable for analyzing measured wind speed data and in predicting the wind-power density in both locations and that Weibull function is not discriminative between locations with high and low mean wind speeds in analyzing wind data. The annual mean wind speeds for the two sites (Sokoto and Yelwa) are 7.99 ms-1 and 2.59 ms-1 respectively, while the annual values of the most probable wind speed and the maximum, energy-carrying wind speeds are respectively:3.52 and 4.34 ms-1 for Yelwa and 8.33 and 9.02 ms-1 for Sokoto. The estimated annual wind power densities for Yelwa and Sokoto are respectively 36.91 and 359.96 Wm-2. Therefore, Sokoto has a better prospect for wind power generation.


Author(s):  
Muhammad Shoaib ◽  
Saif Ur Rehman ◽  
Imran Siddiqui ◽  
Shafiqur Rehman ◽  
Shamim Khan ◽  
...  

In order to have a reliable estimate of wind energy potential of a site, high frequency wind speed and direction data recorded for an extended period of time is required. Weibull distribution function is commonly used to approximate the recorded data distribution for estimation of wind energy. In the present study a comparison of Weibull function and Gaussian mixture model (GMM) as theoretical functions are used. The data set used for the study consists of hourly wind speeds and wind directions of 54 years duration recorded at Ijmuiden wind site located in north of Holland. The entire hourly data set of 54 years is reduced to 12 sets of hourly averaged data corresponding to 12 months. Authenticity of data is assessed by computing descriptive statistics on the entire data set without average and on monthly 12 data sets. Additionally, descriptive statistics show that wind speeds are positively skewed and most of the wind data points are observed to be blowing in south-west direction. Cumulative distribution and probability density function for all data sets are determined for both Weibull function and GMM. Wind power densities on monthly as well as for the entire set are determined from both models using probability density functions of Weibull function and GMM. In order to assess the goodness-of-fit of the fitted Weibull function and GMM, coefficient of determination (R2) and Kolmogorov-Smirnov (K-S) tests are also determined. Although R2 test values for Weibull function are much closer to ‘1’ compared to its values for GMM. Nevertheless, overall performance of GMM is superior to Weibull function in terms of estimated wind power densities using GMM which are in good agreement with the power densities estimated using wind data for the same duration. It is reported that wind power densities for the entire wind data set are 307 W/m2 and 403.96 W/m2 estimated using GMM and Weibull function, respectively.


Sign in / Sign up

Export Citation Format

Share Document