scholarly journals Investigating Long-Term Behaviour of X-ray Binaries Using Archival Data

2015 ◽  
Vol 2 (1) ◽  
pp. 127-132
Author(s):  
M. M. Kotze ◽  
P. A. Charles

Long term modulations have been detected in a wide variety of both low and high-mass X-ray binaries. The All Sky Monitor on board the Rossi X-ray Timing Explorer provides the most extensive (~15 years) and sensitive X-ray archive for studying such behaviour. Since those variations were often intermittent and/or aperiodic, we used a time-dependent Dynamic Power Spectrum method to examine how the modulations themselves vary with time in a systematic way. Some were found to be remarkably stable, while others show a range of properties, from even longer variability time-scales to quite chaotic behaviour.

1994 ◽  
Author(s):  
Paul Roche ◽  
Malcolm Coe ◽  
Chris Everall ◽  
Juan Fabregat ◽  
Victor Reglero ◽  
...  
Keyword(s):  
X Ray ◽  

2018 ◽  
Vol 479 (3) ◽  
pp. 3526-3544 ◽  
Author(s):  
Kristen Garofali ◽  
Benjamin F Williams ◽  
Tristan Hillis ◽  
Karoline M Gilbert ◽  
Andrew E Dolphin ◽  
...  

2012 ◽  
Vol 8 (S291) ◽  
pp. 203-206 ◽  
Author(s):  
Wei Wang

AbstractThere exists a special class of X-ray pulsars that exhibit very slow pulsation of Pspin > 1000 s in the high mass X-ray binaries (HMXBs). We have studied the temporal and spectral properties of these superslow pulsation neutron star binaries in hard X-ray bands with INTEGRAL observations. Long-term monitoring observations find spin period evolution of two sources: spin-down trend for 4U 2206+54 (Pspin ~ 5560 s with Ṗspin ~ 4.9 × 10−7 s s−1) and long-term spin-up trend for 2S 0114+65 (Pspin ~ 9600 s with Ṗspin ~ −1 × 10−6 s s−1) in the last 20 years. A Be X-ray transient, SXP 1062 (Pspin ~ 1062 s), also showed a fast spin-down rate of Ṗspin ~ 3 × 10−6 s s−1 during an outburst. These superslow pulsation neutron stars cannot be produced in the standard X-ray binary evolution model unless the neutron star has a much stronger surface magnetic field (B > 1014 G). The physical origin of the superslow spin period is still unclear. The possible origin and evolution channels of the superslow pulsation X-ray pulsars are discussed. Superslow pulsation X-ray pulsars could be younger X-ray binary systems, still in the fast evolution phase preceding the final equilibrium state. Alternatively, they could be a new class of neutron star system – accreting magnetars.


2017 ◽  
Vol 846 (2) ◽  
pp. 161 ◽  
Author(s):  
Robin H. D. Corbet ◽  
Joel B. Coley ◽  
Hans A. Krimm
Keyword(s):  
X Ray ◽  

2016 ◽  
Vol 12 (S329) ◽  
pp. 432-432
Author(s):  
Atsuo T. Okazaki

AbstractAbout one half of high-mass X-ray binaries host a Be star [an OB star with a viscous decretion (slowly outflowing) disk]. These Be/X-ray binaries exhibit two types of X-ray outbursts (Stella et al. 1986), normal X-ray outbursts (LX~1036−37 erg s−1) and occasional giant X-ray outbursts (LX > 1037 erg s−1). The origin of giant X-ray outbursts is unknown. On the other hand, a half of gamma-ray binaries have a Be star as the optical counterpart. One of these systems [LS I +61 303 (Porb = 26.5 d)] shows the superorbital (1,667 d) modulation in radio through X-ray bands. No consensus has been obtained for its origin. In this paper, we study a possibility that both phenomena are caused by a long-term, cyclic evolution of a highly misaligned Be disk under the influence of a compact object, by performing 3D hydrodynamic simulations. We find that the Be disk cyclically evolves in mildly eccentric, short-period systems. Each cycle consists of the following stages: 1)As the Be disk grows with time, the initially circular disk becomes eccentric by the Kozai-Lidov mechanism.2)At some point, the disk is tidally torn off near the base and starts precession.3)Due to precession, a gap opens between the disk base and mass ejection region, which allows the formation of a new disk in the stellar equatorial plane (see Figure 1).4)The newly formed disk finally replaces the precessing old disk. Such a cyclic disk evolution has interesting implications for the long-term behavior of high energy emission in Be/X-ray and gamma-ray binaries.


2012 ◽  
Vol 8 (S290) ◽  
pp. 287-288 ◽  
Author(s):  
L. M. Oskinova ◽  
A. Feldmeier ◽  
P. Kretschmar

AbstractThe clumping of massive star winds is an established paradigm, which is confirmed by multiple lines of evidence and is supported by stellar wind theory. We use the results from time-dependent hydrodynamical models of the instability in the line-driven wind of a massive supergiant star to derive the time-dependent accretion rate on to a compact object in the Bondi-Hoyle-Lyttleton approximation. The strong density and velocity fluctuations in the wind result in strong variability of the synthetic X-ray light curves. Photoionization of inhomogeneous winds is different from the photoinization of smooth winds. The degree of ionization is affected by the wind clumping. The wind clumping must also be taken into account when comparing the observed and model spectra of the photoionized stellar wind.


Eureka ◽  
2014 ◽  
Vol 4 (1) ◽  
pp. 13-18
Author(s):  
Tyler Naffin

The goal of this project was to examine the relationship between the average x-ray luminosity and the orbital period of x-ray binaries.  Using the data gathered by the All-Sky Monitor instrument aboard the Rossi X-ray Timing Explorer, 29 sources were selected for investigation based on the intensity of the x-rays emitted from each of the sources.  A literature search was then performed to gather further details on each of the sources, including orbital period, distance, hydrogen column density, and classification of each source as either low- or high-mass x-ray binaries with either neutron star or black hole companions.  Sufficient data for 22 of the sources was known in order to create plots of the average luminosity versus the period, which allowed for the period-luminosity relationships for x-ray binaries to be further examined.


2011 ◽  
Vol 7 (S285) ◽  
pp. 23-28
Author(s):  
P. A. Charles ◽  
M. M. Kotze ◽  
A. Rajoelimanana

AbstractThe last 20 years have seen revolutionary developments of large-scale synoptic surveys of the sky, both from the ground (e.g., the MACHO and OGLE projects, which were targetted at micro-lensing studies) and in space (e.g., the X-ray All-Sky Monitor onboard RXTE). These utilised small and medium-sized telescopes to search for transient-like events, but they have now built up a huge database of long-term light-curves, thereby enabling archival research on a wide range of objects that has not been possible hitherto. This is illustrated with examples of long time-scale optical and X-ray variability studies from the field of X-ray binary research: the high-mass BeX binaries in the SMC (using MACHO and OGLE), and the bright galactic-bulge X-ray sources (mostly LMXBs, using RXTE/ASM). As such facilities develop greater capabilities in future and at other wavelengths (developments in South Africa will be described), real-time data processing will allow much more rapid follow-up studies with the new generation of queue-scheduled large telescopes such as SALT.


2020 ◽  
Vol 643 ◽  
pp. A9 ◽  
Author(s):  
I. El Mellah ◽  
V. Grinberg ◽  
J. O. Sundqvist ◽  
F. A. Driessen ◽  
M. A. Leutenegger

Context. In high mass X-ray binaries, an accreting compact object orbits a high mass star, which loses mass through a dense and inhomogeneous wind. Aims. Using the compact object as an X-ray backlight, the time variability of the absorbing column density in the wind can be exploited in order to shed light on the micro-structure of the wind and obtain unbiased stellar mass-loss rates for high mass stars. Methods. We developed a simplified representation of the stellar wind where all the matter is gathered in spherical “clumps” that are radially advected away from the star. This model enables us to explore the connections between the stochastic properties of the wind and the variability of the column density for a comprehensive set of parameters related to the orbit and to the wind micro-structure, such as the size of the clumps and their individual mass. In particular, we focus on the evolution with the orbital phase of the standard deviation of the column density and of the characteristic duration of enhanced absorption episodes. Using the porosity length, we derive analytical predictions and compare them to the standard deviations and coherence time scales that were obtained. Results. We identified the favorable systems and orbital phases to determine the wind micro-structure. The coherence time scale of the column density is shown to be the self-crossing time of a single clump in front of the compact object. We thus provide a procedure to get accurate measurements of the size and of the mass of the clumps, purely based on the observable time variability of the column density. Conclusions. The coherence time scale grants direct access to the size of the clumps, while their mass can be deduced separately from the amplitude of the variability. We further show how monitoring the variability at superior conjunctions can probe the onset of the clump-forming region above the stellar photosphere. If the high column density variations in some high mass X-ray binaries are due to unaccreted clumps which are passing by the line-of-sight, this would require high mass clumps to reproduce the observed peak-to-peak amplitude and coherence time scales. These clump properties are marginally compatible with the ones derived from radiative-hydrodynamics simulations. Alternatively, the following components could contribute to the variability of the column density: larger orbital scale structures produced by a mechanism that has yet to be identified or a dense environment in the immediate vicinity of the accretor, such as an accretion disk, an outflow, or a spherical shell surrounding the magnetosphere of the accreting neutron star.


Sign in / Sign up

Export Citation Format

Share Document