scholarly journals Long-term Monitoring with Small and Medium-sized Telescopes on the Ground and in Space

2011 ◽  
Vol 7 (S285) ◽  
pp. 23-28
Author(s):  
P. A. Charles ◽  
M. M. Kotze ◽  
A. Rajoelimanana

AbstractThe last 20 years have seen revolutionary developments of large-scale synoptic surveys of the sky, both from the ground (e.g., the MACHO and OGLE projects, which were targetted at micro-lensing studies) and in space (e.g., the X-ray All-Sky Monitor onboard RXTE). These utilised small and medium-sized telescopes to search for transient-like events, but they have now built up a huge database of long-term light-curves, thereby enabling archival research on a wide range of objects that has not been possible hitherto. This is illustrated with examples of long time-scale optical and X-ray variability studies from the field of X-ray binary research: the high-mass BeX binaries in the SMC (using MACHO and OGLE), and the bright galactic-bulge X-ray sources (mostly LMXBs, using RXTE/ASM). As such facilities develop greater capabilities in future and at other wavelengths (developments in South Africa will be described), real-time data processing will allow much more rapid follow-up studies with the new generation of queue-scheduled large telescopes such as SALT.

2015 ◽  
Vol 2 (1) ◽  
pp. 127-132
Author(s):  
M. M. Kotze ◽  
P. A. Charles

Long term modulations have been detected in a wide variety of both low and high-mass X-ray binaries. The All Sky Monitor on board the Rossi X-ray Timing Explorer provides the most extensive (~15 years) and sensitive X-ray archive for studying such behaviour. Since those variations were often intermittent and/or aperiodic, we used a time-dependent Dynamic Power Spectrum method to examine how the modulations themselves vary with time in a systematic way. Some were found to be remarkably stable, while others show a range of properties, from even longer variability time-scales to quite chaotic behaviour.


2021 ◽  
Vol 8 (1) ◽  
Author(s):  
Sungmin O. ◽  
Rene Orth

AbstractWhile soil moisture information is essential for a wide range of hydrologic and climate applications, spatially-continuous soil moisture data is only available from satellite observations or model simulations. Here we present a global, long-term dataset of soil moisture derived through machine learning trained with in-situ measurements, SoMo.ml. We train a Long Short-Term Memory (LSTM) model to extrapolate daily soil moisture dynamics in space and in time, based on in-situ data collected from more than 1,000 stations across the globe. SoMo.ml provides multi-layer soil moisture data (0–10 cm, 10–30 cm, and 30–50 cm) at 0.25° spatial and daily temporal resolution over the period 2000–2019. The performance of the resulting dataset is evaluated through cross validation and inter-comparison with existing soil moisture datasets. SoMo.ml performs especially well in terms of temporal dynamics, making it particularly useful for applications requiring time-varying soil moisture, such as anomaly detection and memory analyses. SoMo.ml complements the existing suite of modelled and satellite-based datasets given its distinct derivation, to support large-scale hydrological, meteorological, and ecological analyses.


2016 ◽  
Author(s):  
Mike J. Newland ◽  
Patricia Martinerie ◽  
Emmanuel Witrant ◽  
Detlev Helmig ◽  
David R. Worton ◽  
...  

Abstract. The NOX (NO and NO2) and HOX (OH and HO2) budgets of the atmosphere exert a major influence on atmospheric composition, controlling removal of primary pollutants and formation of a wide range of secondary products, including ozone, that can influence human health and climate. However, there remain large uncertainties in the changes to these budgets over recent decades. Due to their short atmospheric lifetimes, NOX and HOX are highly variable in space and time, and so the measurements of these species are of very limited value for examining long term, large scale changes to their budgets. Here, we take an alternative approach by examining long-term atmospheric trends of alkyl nitrates, the formation of which is dependent on the atmospheric NO / HO2 ratio. We derive long term trends in the alkyl nitrates from measurements in firn air from the NEEM site, Greenland. Their mixing ratios increased by a factor of 4–5 between the 1970s and 1990s. This was followed by a steep decline to the sampling date of 2008. Moreover, we examine how the trends in the alkyl nitrates compare to similarly derived trends in their parent alkanes (i.e. the alkanes which, when oxidised in the presence of NOX, lead to the formation of the alkyl nitrates). The ratios of the alkyl nitrates to their parent alkanes increase from around 1970 to the late 1990's consistent with large changes to the [NO] / [HO2] ratio in the northern hemisphere atmosphere during this period. These could represent historic changes to NOX sources and sinks. Alternatively, they could represent changes to concentrations of the hydroxyl radical, OH, or to the transport time of the air masses from source regions to the Arctic.


2016 ◽  
Vol 12 (S329) ◽  
pp. 355-358
Author(s):  
Peter Kretschmar ◽  
Silvia Martínez-Núñez ◽  
Enrico Bozzo ◽  
Lidia M. Oskinova ◽  
Joachim Puls ◽  
...  

AbstractStrong winds from massive stars are a topic of interest to a wide range of astrophysical fields. In High-Mass X-ray Binaries the presence of an accreting compact object on the one side allows to infer wind parameters from studies of the varying properties of the emitted X-rays; but on the other side the accretor’s gravity and ionizing radiation can strongly influence the wind flow. Based on a collaborative effort of astronomers both from the stellar wind and the X-ray community, this presentation attempts to review our current state of knowledge and indicate avenues for future progress.


1994 ◽  
Author(s):  
Paul Roche ◽  
Malcolm Coe ◽  
Chris Everall ◽  
Juan Fabregat ◽  
Victor Reglero ◽  
...  
Keyword(s):  
X Ray ◽  

2020 ◽  
Vol 497 (1) ◽  
pp. 1115-1126
Author(s):  
M Pereyra ◽  
D Altamirano ◽  
J M C Court ◽  
N Degenaar ◽  
R Wijnands ◽  
...  

ABSTRACT IGR J17091–3624 is a low-mass X-ray binary (LMXB), which received wide attention from the community thanks to its similarities with the bright black hole system GRS 1915+105. Both systems exhibit a wide range of highly structured X-ray variability during outburst, with time-scales from few seconds to tens of minutes, which make them unique in the study of mass accretion in LMXBs. In this work, we present a general overview into the long-term evolution of IGR J17091–3624, using Swift/XRT observations from the onset of the 2011–2013 outburst in 2011 February till the end of the last bright outburst in 2016 November. We found four re-flares during the decay of the 2011 outburst, but no similar re-flares appear to be present in the latter one. We studied, in detail, the period with the lowest flux observed in the last 10 yr, just at the tail end of the 2011–2013 outburst, using Chandra and XMM-Newton observations. We observed changes in flux as high as a factor of 10 during this period of relative quiescence, without strong evidence of softening in the spectra. This result suggests that the source has not been observed at its true quiescence so far. By comparing the spectral properties at low luminosities of IGR J17091–3624 and those observed for a well-studied population of LMXBs, we concluded that IGR J17091–3624 is most likely to host a black hole as a compact companion rather than a neutron star.


1990 ◽  
Vol 123 ◽  
pp. 463-468
Author(s):  
M. Matsuoka ◽  
N. Kawai ◽  
T. Imai ◽  
M. Yamauchi ◽  
A. Yoshida ◽  
...  

AbstractWe propose an X-ray all sky monitor for Japanese Experimental Module (JEM) on the space station. Considering practical circumstances, we show as a case study that the all sky monitor with slit hole cameras is most promising for monitoring the short-term and long-term X-ray transients. We call this all sky monitor as MAXI (Monitor of All-sky X-ray Image). Position determination of gamma-ray bursts could be achieved with accuracy less than one degree observing the X-ray component of the burst. Weak X-ray sources such as active galactic nuclei could be also monitored with time resolution less than one day. The X-ray all sky monitor will work to discover X-ray novae and transient phenomena and give us the alarm for further detailed observations. The obtained data will be also used for archival study.


2019 ◽  
Vol 76 (Suppl 1) ◽  
pp. A64.3-A65
Author(s):  
Yiqun Chen ◽  
Andrew Curran

The Health and Safety Executive (HSE) is the GB regulator for health and safety at work. The HSE Health and Work (H&W) program designs and carries out a wide range of interventions; including inspection, enforcement and other regulatory activities as well as prevention; targeting priority health conditions in high-risk sectors. It is anticipated that long-term, sustainable and coordinated actions developed as part of the program will over time improve awareness, behaviors, control of exposures, and, as a result, prevent work-related ill health in GB workforce.An HSE Measuring Strategy, together with measurement framework and principles, has been developed. The measurement framework draws together data systems, covering Attitudes (A), Behaviors (B), Control of exposures (C), and Disease and work-related ill health reduction (D), based on a simple model to provide evidence required for evaluating the short, medium and long term impacts of the large scale and complex H&W program on the GB health and safety system. The Strategy gives a new focus on measuring behavioral changes and risk reductions; and emphasizes longitudinal measurement designs to assess progress over time.For developing the Strategy, workshops were organized to bring stakeholders across HSE to review existing systems for conducting population surveys, collecting exposure intelligence and occupational health surveillance, which have contributed to forming a long-term vision of fit-for-purpose measurement systems.We will present the development of the Strategy and the plans to implement it with the H&W program, which requires close collaborations between epidemiologists and social researchers, policy makers, and other multidisciplinary regulatory specialists. The lessons learnt will help HSE towards building the right evidence base for monitoring and evaluation of a range of national level intervention programs for work-related ill health prevention.©British Crown copyright (2019)


1986 ◽  
Vol 84 ◽  
Author(s):  
Rodney C. Ewing ◽  
Michael J. Jercinovic

AbstractOne of the unique and scientifically most difficult aspects of nuclear waste isolation is the extrapolation ofshot-term laboratory data (hours to years) to the long time periods (103-105 years) required by regulatory agencies for performance assessment. The direct verification of these extrapolations is not possible, but methods must be developed to demonstrate compliance with government regulations and to satisfy the lay public that there is a demonstrable and reasonable basis for accepting the long-term extrapolations. Natural analogues of both the repository environment (e.g. radionuclide migration at Oklo) and nuclear waste form behavior (e.g. alteration of basaltic glasses and radiation damage in minerals) have been used to demonstrate the long-term behavior of large scale geologic systems and, on a smaller scale, waste form durability. This paper reviews the use of natural analogues to predict the long-term behavior of nuclear waste form glasses. Particular emphasis is placed on the inherent limitations of any conclusions that are based on “proof” by analogy. An example -- corrosion of borosilicate glass -- is discussed in detail with specific attention to the proper and successful use of natural analogues (basaltic glass) in understanding the long-term corrosion behavior of borosilicate glass.


2020 ◽  
Vol 496 (2) ◽  
pp. 1325-1342 ◽  
Author(s):  
Ioana Boian ◽  
Jose H Groh

ABSTRACT We compute an extensive set of early-time spectra of supernovae interacting with circumstellar material using the radiative transfer code cmfgen. Our models are applicable to events observed from 1 to a few days after explosion. Using these models, we constrain the progenitor and explosion properties of a sample of 17 observed interacting supernovae at early times. Because massive stars have strong mass-loss, these spectra provide valuable information about supernova progenitors, such as mass-loss rates, wind velocities, and surface abundances. We show that these events span a wide range of explosion and progenitor properties, exhibiting supernova luminosities in the 108 to 1012 L⊙ range, temperatures from 10 000 to 60 000 K, progenitor mass-loss rates from a few 10−4 up to 1 M⊙ yr−1, wind velocities from 100 to 800 km s−1, and surface abundances from solar-like to H-depleted. Our results suggest that many progenitors of supernovae interacting with circumstellar material have significantly increased mass-loss before explosion compared to what massive stars show during the rest of their lifetimes. We also infer a lack of correlation between surface abundances and mass-loss rates. This may point to the pre-explosion mass-loss mechanism being independent of stellar mass. We find that the majority of these events have CNO-processed surface abundances. In the single star scenario this points to a preference towards high-mass RSGs as progenitors of interacting SNe, while binary evolution could impact this conclusion. Our models are publicly available and readily applicable to analyse results from ongoing and future large-scale surveys such as the Zwicky Transient Factory.


Sign in / Sign up

Export Citation Format

Share Document