scholarly journals From Switching Arcs to Ball Lightning to Curing Cancer!

2019 ◽  
Vol 6 (2) ◽  
pp. 194-199
Author(s):  
J. J. Lowke

Previous modelling of switching has been through calculation of reductions in temperature of the arc at "current zero". "Enthalpy density" as a function of temperature is found to be an important property. New calculations now include an account of non-equilibrium electron density as a function of time through current zero and it is found that electron attachment rates, which are very large for SF<sub>6</sub>, could be a dominant property. Modelling discharges is having other successes, for example in explaining "ball lightning" observations inside of houses and aircraft, which suddenly appear, usually at glass windows. Discharge modelling suggests these observations might be explained by the production of "singlet delta" metastable molecules of oxygen in electrical discharges in air. If metastable densities are sufficient, electrons can be produced from the detachment of negative ions to produce radiation and explain ball lightning. An exciting new development is that plasmas from electric corona in air have been found to reduce the size of cancer tumours. These excited oxygen molecules have also been proposed as having a role in this remarkable interchange between classical electrical engineering and medical science.

2019 ◽  
Vol 8 (4) ◽  
pp. 9487-9492

The outdoor insulator is commonly exposed to environmental pollution. The presence of water like raindrops and dew on the contaminant surface can lead to surface degradation due to leakage current. However, the physical process of this phenomenon is not well understood. Hence, in this study we develop a mathematical model of leakage current on the outdoor insulator surface using the Nernst Planck theory which accounts for the charge transport between the electrodes (negative and positive electrode) and charge generation mechanism. Meanwhile the electric field obeys Poisson’s equation. Method of Lines technique is used to solve the model numerically in which it converts the PDE into a system of ODEs by Finite Difference Approximations. The numerical simulation compares reasonably well with the experimental conduction current. The findings from the simulation shows that the conduction current is affected by the electric field distribution and charge concentration. The rise of the conduction current is due to the distribution of positive ion while the dominancy of electron attachment with neutral molecule and recombination with positive ions has caused a significant reduction of electron and increment of negative ions.


2020 ◽  
Vol 75 (3) ◽  
pp. 211-223 ◽  
Author(s):  
Manoj Kr. Deka ◽  
Apul N. Dev

AbstractThe propagation characteristics of solitary wave in a degenerate plasma in the presence of Landau-quantised magnetic field and heavy negative ion are studied. The nature of solitary wave in such plasma under the influence of magnetic quantisation and the concentration of both electrons and negative ions, as well as in the presence of degenerate temperature, are studied with the help of a time-independent analytical scheme of the solution of Zakharov–Kuznetsov equation. The electron density, as well as the magnetic quantisation parameter, has an outstanding effect on the features of solitary wave proliferation in such plasma. Interestingly, for any fixed electron density, the magnetic quantisation parameter has an equal control on the maximum height and dispersive properties of the solitary wave. Toward higher temperatures and higher magnetic fields, the width of the solitary wave decreases. For a lower magnetic field, the maximum amplitude of the solitary wave decreases rapidly at higher values of degenerate temperature and negative ion concentration; however, at a lower value of degenerate temperature, the maximum amplitude increases with increasing negative ion concentration.


2007 ◽  
Vol 98 (4) ◽  
Author(s):  
Gerson Silva Paiva ◽  
Antonio Carlos Pavão ◽  
Elder Alpes de Vasconcelos ◽  
Odim Mendes ◽  
Eronides Felisberto da Silva

1986 ◽  
Vol 68 ◽  
Author(s):  
Brian E. Thompson ◽  
Herbert H. Sawun ◽  
Aaron Owens

AbstractContinuity equations for the concentration of electrons, positive ions, and negative ions were constructed and solved to predict rf breakdown voltages and the electrical properties of SF, discharges.These balances for the three types of charged species include terms for convection (electric field-driven fluxes), diffusion, and reactions (ionization, electron attachment, and negative-positive ion recombination).The mobilities, diffusivities, and reaction rate coefficients necessary for the rf discharge model are based on reported measurements and calculations of these parameters in dc electric fields.The electric fields developed in the rf discharge are calculated from Poisson's equation and applied voltage conditions.Predictions based on this model are compared with measured rf breakdown characteristics of SF6.


2003 ◽  
Vol 52 (9) ◽  
pp. 1974-1981 ◽  
Author(s):  
R. V. Khatymov ◽  
M. V. Muftakhov ◽  
P. V. Schukin ◽  
V. A. Mazunov

Sign in / Sign up

Export Citation Format

Share Document