Applications of Machine Learning Models on Yelp Data

2019 ◽  
Vol 29 (1) ◽  
pp. 35-49
Author(s):  
Ruchi Singh ◽  
◽  
Jongwook Woo
2020 ◽  
Vol 98 (Supplement_4) ◽  
pp. 44-45
Author(s):  
Dan Tulpan

Abstract This is a hands-on workshop offered as a pre-conference training opportunity for researchers interested in applying machine learning techniques to animal science datasets with the purpose of classifying, clustering, performing linear and non-linear regressions or selecting a subset of features relevant to further studies. The objective of this workshop is to provide the audience with a way to formulate a problem such that it will be solvable by machine learning techniques and apply an exploratory analysis of various machine learning on different datasets. The workshop is structured in a hands-on format and includes a brief overview of basic notions about machine learning, a description of relevant models and evaluation metrics followed by a practical session. The practical session requires each attendee to bring their own laptop and have already installed the Waikato Environment for Knowledge Analysis (Weka) workbench for machine learning available from https://www.cs.waikato.ac.nz/ml/weka/ and all freely available machine learning models. The Weka installation of freely available machine learning models can be achieved by using the Weka Package Manager available from the Tools menu in the main application. Detailed information will be provided 2 weeks before the beginning of the workshop (week of July 5, 2020) at the following URL:http://animalbiosciences.uoguelph.ca/~dtulpan/conferences/asas2020_mlworkshop/


Hydrology ◽  
2021 ◽  
Vol 9 (1) ◽  
pp. 5
Author(s):  
Evangelos Rozos ◽  
Panayiotis Dimitriadis ◽  
Vasilis Bellos

Machine learning has been employed successfully as a tool virtually in every scientific and technological field. In hydrology, machine learning models first appeared as simple feed-forward networks that were used for short-term forecasting, and have evolved into complex models that can take into account even the static features of catchments, imitating the hydrological experience. Recent studies have found machine learning models to be robust and efficient, frequently outperforming the standard hydrological models (both conceptual and physically based). However, and despite some recent efforts, the results of the machine learning models require significant effort to interpret and derive inferences. Furthermore, all successful applications of machine learning in hydrology are based on networks of fairly complex topology that require significant computational power and CPU time to train. For these reasons, the value of the standard hydrological models remains indisputable. In this study, we suggest employing machine learning models not as a substitute for hydrological models, but as an independent tool to assess their performance. We argue that this approach can help to unveil the anomalies in catchment data that do not fit in the employed hydrological model structure or configuration, and to deal with them without compromising the understanding of the underlying physical processes.


2021 ◽  
Vol 99 (Supplement_3) ◽  
pp. 44-44
Author(s):  
Dan Tulpan

Abstract This is a hands-on workshop offered as a pre-conference training opportunity for researchers interested in applying machine learning techniques to animal science datasets with the purpose of classifying, clustering, performing linear and non-linear regressions or selecting a subset of features relevant to further studies. The objective of this workshop is to provide the audience with a way to formulate a problem such that it will be solvable by machine learning techniques and apply an exploratory analysis of various machine learning algorithms on different datasets. The workshop is structured in a hands-on format and includes a brief overview of basic notions about machine learning, a description of relevant models and evaluation metrics followed by a practical session. The practical session requires each attendee to bring their own laptop and have already installed the Waikato Environment for Knowledge Analysis (Weka) workbench for machine learning available from https://www.cs.waikato.ac.nz/ml/weka/ and all freely available machine learning models. The Weka installation of freely available machine learning models can be achieved by using the Weka Package Manager available from the Tools menu in the main application. Detailed information will be provided before the beginning of the workshop at the following URL: http://animalbiosciences.uoguelph.ca/~dtulpan/conferences/asas2021_mlworkshop/


Author(s):  
Enislay Ramentol ◽  
Tomas Olsson ◽  
Shaibal Barua

More and more industries are aspiring to achieve a successful production using the known artificial intelligence. Machine learning (ML) stands as a powerful tool for making very accurate predictions, concept classification, intelligent control, maintenance predictions, and even fault and anomaly detection in real time. The use of machine learning models in industry means an increase in efficiency: energy savings, human resources efficiency, increase in product quality, decrease in environmental pollution, and many other advantages. In this chapter, we will present two industrial applications of machine learning. In all cases we achieve interesting results that in practice can be translated as an increase in production efficiency. The solutions described cover areas such as prediction of production quality in an oil and gas refinery and predictive maintenance for micro gas turbines. The results of the experiments carried out show the viability of the solutions.


2020 ◽  
Vol 2 (1) ◽  
pp. 3-6
Author(s):  
Eric Holloway

Imagination Sampling is the usage of a person as an oracle for generating or improving machine learning models. Previous work demonstrated a general system for using Imagination Sampling for obtaining multibox models. Here, the possibility of importing such models as the starting point for further automatic enhancement is explored.


2021 ◽  
Author(s):  
Norberto Sánchez-Cruz ◽  
Jose L. Medina-Franco

<p>Epigenetic targets are a significant focus for drug discovery research, as demonstrated by the eight approved epigenetic drugs for treatment of cancer and the increasing availability of chemogenomic data related to epigenetics. This data represents a large amount of structure-activity relationships that has not been exploited thus far for the development of predictive models to support medicinal chemistry efforts. Herein, we report the first large-scale study of 26318 compounds with a quantitative measure of biological activity for 55 protein targets with epigenetic activity. Through a systematic comparison of machine learning models trained on molecular fingerprints of different design, we built predictive models with high accuracy for the epigenetic target profiling of small molecules. The models were thoroughly validated showing mean precisions up to 0.952 for the epigenetic target prediction task. Our results indicate that the herein reported models have considerable potential to identify small molecules with epigenetic activity. Therefore, our results were implemented as freely accessible and easy-to-use web application.</p>


Sign in / Sign up

Export Citation Format

Share Document