scholarly journals Radiation pathology of the thyroid gland lecture 2. Iodine blockade in accidents at nuclear production

1997 ◽  
Vol 43 (5) ◽  
pp. 23-27
Author(s):  
E. P. Kasatkina ◽  
D. E. Shilin

Currently, more than 400 nuclear power plants (NPPs) are operating on the planet, more than 100 are under construction. In addition, a large number of individual nuclear reactors operate. By 1990, 46 power units at 15 nuclear power plants were operating in the territory of the former USSR, 111 reactors in the United States and another 12 are under construction. Hundreds of tons of uranium oxide are loaded into nuclear reactors. Therefore, during the generation of atomic energy, they accumulate a huge amount of radioactive substances (RS), formed during the physical decay of the nuclei of fuel atoms. Reactors are primarily a potential source of radiation hazard and the release of radioactive substances contained in them into the environment and the human body.

2012 ◽  
Vol 134 (04) ◽  
pp. 28-32
Author(s):  
Bridget Mintz Testa

This article discusses the obstacles in producing ultraheavy duty products for nuclear reactors in the United States. There has not been much call for making reactor vessels in the United States for decades. Even in the 1970s, the peak decade for building nuclear power plants in the United States, only around a dozen reactor vessels were installed in the best years. To produce ultraheavy products, entirely new forging facilities would have to be built. As per some estimates, one new ultraheavy forging facility would cost $1.5 billion to $2.5 billion, and it would take five to seven years to build. There is also problem related to profit making. Changing these conditions to favor building domestic ultraheavy forging capability would take a coherent energy policy for the United States regarding nuclear power, making it much more important in the energy capabilities.


Author(s):  
Ronald C. Lippy

The nuclear industry is preparing for the licensing and construction of new nuclear power plants in the United States. Several new designs have been developed and approved, including the “traditional” reactor designs, the passive safe shutdown designs and the small modular reactors (SMRs). The American Society of Mechanical Engineers (ASME) provides specific Codes used to perform preservice inspection/testing and inservice inspection/testing for many of the components used in the new reactor designs. The U.S. Nuclear Regulatory Commission (NRC) reviews information provided by applicants related to inservice testing (IST) programs for Design Certifications and Combined Licenses (COLs) under Part 52, “Licenses, Certifications, and Approvals for Nuclear Power Plants,” in Title 10 of the Code of Federal Regulations (10 CFR Part 52) (Reference 1). The 2012 Edition of the ASME OM Code defines a post-2000 plant as a nuclear power plant that was issued (or will be issued) its construction permit, or combined license for construction and operation, by the applicable regulatory authority on or following January 1, 2000. The New Reactors OM Code (NROMC) Task Group (TG) of the ASME Code for Operation and Maintenance of Nuclear Power Plants (NROMC TG) is assigned the task of ensuring that the preservice testing (PST) and IST provisions in the ASME OM Code to address pumps, valves, and dynamic restraints (snubbers) in post-2000 nuclear power plants are adequate to provide reasonable assurance that the components will operate as needed when called upon. Currently, the NROMC TG is preparing proposed guidance for the treatment of active pumps, valves, and dynamic restraints with high safety significance in non-safety systems in passive post-2000 reactors including SMRs.


2021 ◽  
Vol 2083 (2) ◽  
pp. 022020
Author(s):  
Jiahuan Yu ◽  
Xiaofeng Zhang

Abstract With the development of the nuclear energy industry and the increasing demand for environmental protection, the impact of nuclear power plant radiation on the environment has gradually entered the public view. This article combs the nuclear power plant radiation environmental management systems of several countries, takes the domestic and foreign management of radioactive effluent discharge from nuclear power plants as a starting point, analyses and compares the laws and standards related to radioactive effluents from nuclear power plants in France, the United States, China, and South Korea. In this paper, the management improvement of radioactive effluent discharge system of Chinese nuclear power plants has been discussed.


Author(s):  
Steven A. Arndt

Over the past 20 years, the nuclear power industry in the United States (U.S.) has been slowly replacing old, obsolete, and difficult-to-maintain analog technology for its nuclear power plant protection, control, and instrumentation systems with digital systems. The advantages of digital technology, including more accurate and stable measurements and the ability to improve diagnostics capability and system reliability, have led to an ever increasing move to complete these upgrades. Because of the difficulties with establishing digital systems safety based on analysis or tests, the safety demonstration for these systems relies heavily on establishing the quality of the design and development of the hardware and software. In the United States, the U.S. Nuclear Regulatory Commission (NRC) has established detailed guidelines for establishing and documenting an appropriate safety demonstration for digital systems in NUREG-0800, “Standard Review Plan for the Review of Safety Analysis Reports for Nuclear Power Plants: LWR Edition,” Chapter 7, “Instrumentation and Controls,” Revision 5, issued March 2007 [1], and in a number of regulatory guides and interim staff guidance documents. However, despite the fact that the United States has a well-defined review process, a number of significant challenges associated with the design, licensing, and implementation of upgrades to digital systems for U.S. plants have emerged. Among these challenges have been problems with the quality of the systems and the supporting software verification and validation (V&V) processes, challenges with determining the optimum balance between the enhanced capabilities for the new systems and the desire to maintain system simplicity, challenges with cyber security, and challenges with developing the information needed to support the review of new systems for regulatory compliance.


Author(s):  
Bernard Gautier ◽  
Mickael Cesbron ◽  
Richard Tulinski

Fire hazard is an important issue for the safety of nuclear power plants: the main internal hazard in terms of frequency, and probably one the most significant with regards to the design costs. AFCEN is publishing in 2018 a new code for fire protection of new built PWR nuclear plants, so-called RCC-F. This code is an evolution of the former ETC-F code which has been applied to different EPR plants under construction (Flamanville 3 (FA3, France), Hinkley Point C (HPC, United Kingdom), Taïshan (TSN, China)). The RCC-F code presents significant enhancement and evolutions resulting from eight years of work by the AFCEN dedicated sub-committee, involving a panel of contributors from the nuclear field. It is now opened to any type of PWR (Pressurized Water Reactor) type of nuclear power plants and not any longer limited to EPR (European Pressurized Reactor) plants. It can potentially be adapted to other light water concepts. Its objective is to help engineers design the fire prevention and protection scheme, systems and equipment with regards to the safety case and the defense in depth taking into account the French and European experience in the field. It deals also with the national regulations, with two appendices dedicated to French and British regulations respectively. The presentation gives an overview of the code specifications and focuses on the significant improvements.


Author(s):  
Eugene Imbro ◽  
Thomas G. Scarbrough

The U.S. Nuclear Regulatory Commission (NRC) has established an initiative to risk-inform the requirements in Title 10 of the Code of Federal Regulations (10 CFR) for the regulatory treatment of structures, systems, and components (SSCs) used in commercial nuclear power plants. As discussed in several Commission papers (e.g., SECY-99-256 and SECY-00-0194), Option 2 of this initiative involves categorizing plant SSCs based on their safety significance, and specifying treatment that would provide an appropriate level of confidence in the capability of those SSCs to perform their design functions in accordance with their risk categorization. The NRC has initiated a rulemaking effort to allow licensees of nuclear power plants in the United States to implement the Option 2 approach in lieu of the “special treatment requirements” of the NRC regulations. In a proof-of-concept effort, the NRC recently granted exemptions from the special treatment requirements for safety-related SSCs categorized as having low risk significance by the licensee of the South Texas Project (STP) Units 1 and 2 nuclear power plant, based on a review of the licensee’s high-level objectives of the planned treatment for safety-related and high-risk nonsafety-related SSCs. This paper discusses the NRC staff’s views regarding the treatment of SSCs at STP described by the licensee in its updated Final Safety Analysis Report (FSAR) in support of the exemption request, and provides the status of rulemaking that would incorporate risk insights into the treatment of SSCs at nuclear power plants.


Author(s):  
David Alley

This paper provides a historical perspective on the need for, and development of, buried and underground piping tanks programs at nuclear power plants. Nuclear power plant license renewal activities, Nuclear Regulatory Commission Buried Piping Action Plan, and the rationale for addressing the issue of buried pipe through an industry initiative as opposed to regulation are discussed. The paper also addresses current NRC activities including the results of Nuclear Regulatory Commission inspections of buried piping programs at nuclear power plants as well as Nuclear Regulatory Commission involvement in industry and standards development organizations. Finally, the paper outlines the Nuclear Regulatory Commission’s future plans concerning the issue of buried piping at US nuclear power plants.


2020 ◽  
Vol 15 (28) ◽  
pp. 344-375
Author(s):  
Anita Paulovics

This paper is about the legal regulation of the extension of the operation time of nuclear power plants.  In Hungary the most important document in this respect has been the National Energy Strategy analyzed in the paper. In Hungary, the legal regulation of the extension of the time limit of the operation-permit of nuclear power plants is modelled on that of the United States. For this reason, the paper examines the rules in force in the USA on the extension of the operation time.  It could be of interest for several European countries considering to extend the operation time of their nuclear power plants.


Sign in / Sign up

Export Citation Format

Share Document