scholarly journals Enhanced Healing of Rat Calvarial Bone Defects with Hypoxic Conditioned Medium from Mesenchymal Stem Cells through Increased Endogenous Stem Cell Migration via Regulation of ICAM-1 Targeted-microRNA-221

2015 ◽  
Vol 38 (7) ◽  
pp. 643-650 ◽  
Author(s):  
Woochul Chang ◽  
Ran Kim ◽  
Sang In Park ◽  
Yu Jin Jung ◽  
Onju Ham ◽  
...  
2008 ◽  
Vol 20 (9) ◽  
pp. 18
Author(s):  
S. Qin ◽  
P. Murthi ◽  
S. Brennecke ◽  
B. Kalionis

Mesenchymal stem cells (MSCs) can be prepared from the placenta (PMSC) and the choriodecidua component of the fetal membranes (CDMSC). PMSCs and CDMSCs share basic stem cell properties with adult MSCs but differ in their gene expression profiles and ultrastructure, showing features of more primitive and metabolically quiescent stem cells (1). Homeobox gene transcription factors are critical markers for identifying stem cells and they regulate important stem cell functions. Our laboratory showed the homeobox gene HLX is expressed in the placenta and the choriodecidua component of the fetal membranes, and is a regulator of proliferation in placental cells (2). In this study, our aim was to determine whether HLX was expressed in CDMSCs and to use short interfering RNAs (siRNAs) to specifically inactivate HLX and determine the effect on CDMSC function. Complementary DNA was prepared from CDMSCs and RT–PCR using HLX-specific primers generated the expected band size of 485bp following agarose gel electrophoresis (n = 3). At the protein level, HLX expression was detected in the nuclei of CDMSCs using immunocytochemistry. The expected HLX protein product was detected at ~50kDa using western blotting (n = 3). Conditions were optimised for the use of short interfering RNAs (siRNA) to decrease HLX expression in CDMSCs with 5nM giving the most efficient downregulation. Two independent siRNAs were tested (HLXsi3–4) and of these, HLXsi4 resulted in significantly decreased HLX mRNA levels in CDMSCs as shown by real-time PCR (0.66 ± 0.08, P = 0.03, n = 3). Functional assays to measure stem cell migration were carried out in quadriplicates on two samples. 10000 cells were placed on one side of a filter and the number of cells that migrated to the other side of the filter was stained and densitometric analysis was carried out using Axiovision image analysis software. These results suggest that the HLXsi4-mediated decrease in HLX expression resulted in reduced CDMSC migration (2.6x103 ± 401 v. 1.3x103 ± 225 densitometric units, P = 0.02). Therefore, HLX may play a role in stem cell migration. (1) Pasquinelli G, Tazzari P, Ricci F, Vaselli C, Buzzi M, Conte R, Orrico C, Foroni L, Stella A, Alviano F, Bagnara GP and Lucarelli E., Ultrastructural characteristics of human mesenchymal stromal. (2) Rajaraman G, Murthi P, Quinn L, Brennecke SP, Kalionis B. Homeodomain protein HLX is expressed primarily in cytotrophoblast cell types in the early pregnancy human placenta. Reprod Fertil Dev. 2008. (3) Rajaraman G, Murthi P, Leo B, Brennecke SP and Kalionis B. Homeobox gene HLX1 is a regulator of colony stimulating factor-1 dependent trophoblast cell proliferation. Placenta. 2007. 28(10):991–8.


2018 ◽  
Vol 55 (4) ◽  
pp. 691-695
Author(s):  
Tudor Sorin Pop ◽  
Anca Maria Pop ◽  
Alina Dia Trambitas Miron ◽  
Klara Brinzaniuc ◽  
Simona Gurzu ◽  
...  

The use of collagen scaffolds and stem cells for obtaining a tissue-engineering complex has been an important concept in promoting repair and regeneration of the bone tissue. Such units represent important steps in the development of an ideal scaffold-cell complex that would sustain new bone apposition. The aim of our study was to perform a histologic evaluation of the healing of critical-sized bone defects, using a biologic collagen scaffold with adipose-derived mesenchymal stem cells, in comparison to negative controls created in the adjacent bone. We used 16 Wistar rats and according to the study design 2 calvarial bone defects were created in each animal, one was filled with collagen seeded with adipose-derived stem cells and the other one was considered negative control. During the following month, at weekly intervals, the animals were euthanized and the specimens from bone defects were histologically evaluated. The results showed that these scaffolds were highly biocompatible as only moderate inflammation no rejection reactions were observed. Furthermore, the first signs of osseous healing appeared after two weeks accompanied by angiogenesis. Collagen scaffolds seeded with adipose-derived mesenchymal stem cells can be considered a promising treatment option in bone regeneration of large defects.


2019 ◽  
Vol 70 (6) ◽  
pp. 1983-1987
Author(s):  
Cristian Trambitas ◽  
Anca Maria Pop ◽  
Alina Dia Trambitas Miron ◽  
Dorin Constantin Dorobantu ◽  
Flaviu Tabaran ◽  
...  

Large bone defects are a medical concern as these are often unable to heal spontaneously, based on the host bone repair mechanisms. In their treatment, bone tissue engineering techniques represent a promising approach by providing a guide for osseous regeneration. As bioactive glasses proved to have osteoconductive and osteoinductive properties, the aim of our study was to evaluate by histologic examination, the differences in the healing of critical-sized calvarial bone defects filled with bioactive glass combined with adipose-derived mesenchymal stem cells, compared to negative controls. We used 16 male Wistar rats subjected to a specific protocol based on which 2 calvarial bone defects were created in each animal, one was filled with Bon Alive S53P4 bioactive glass and adipose-derived stem cells and the other one was considered control. At intervals of one week during the following month, the animals were euthanized and the specimens from bone defects were histologically examined and compared. The results showed that this biomaterial was biocompatible and the first signs of osseous healing appeared in the third week. Bone Alive S53P4 bioactive glass could be an excellent bone substitute, reducing the need of bone grafts.


2012 ◽  
Vol 23 (1-4) ◽  
pp. 153-165 ◽  
Author(s):  
Yusuke Ueda ◽  
Satoshi Fujita ◽  
Tatsuya Nishigaki ◽  
Yusuke Arima ◽  
Hiroo Iwata

Lab on a Chip ◽  
2020 ◽  
Vol 20 (5) ◽  
pp. 958-972
Author(s):  
Enrique Ros ◽  
Matías Encina ◽  
Fabián González ◽  
Rafael Contreras ◽  
Patricia Luz-Crawford ◽  
...  

Detailed cell migration profiling allows for accurate correlations with therapeutic functions of mesenchymal stem cells.


2015 ◽  
Vol 4 (4) ◽  
pp. 359-368 ◽  
Author(s):  
Shaowei Li ◽  
Ke-Jung Huang ◽  
Jen-Chieh Wu ◽  
Michael S. Hu ◽  
Mrinmoy Sanyal ◽  
...  

2019 ◽  
Vol 20 (5) ◽  
pp. 1118 ◽  
Author(s):  
Jordi Camps ◽  
Hanne Grosemans ◽  
Rik Gijsbers ◽  
Christa Maes ◽  
Maurilio Sampaolesi

Progressive muscle degeneration followed by dilated cardiomyopathy is a hallmark of muscular dystrophy. Stem cell therapy is suggested to replace diseased myofibers by healthy myofibers, although so far, we are faced by low efficiencies of migration and engraftment of stem cells. Chemokines are signalling proteins guiding cell migration and have been shown to tightly regulate muscle tissue repair. We sought to determine which chemokines are expressed in dystrophic muscles undergoing tissue remodelling. Therefore, we analysed the expression of chemokines and chemokine receptors in skeletal and cardiac muscles from Sarcoglycan-α null, Sarcoglycan-β null and immunodeficient Sgcβ-null mice. We found that several chemokines are dysregulated in dystrophic muscles. We further show that one of these, platelet-derived growth factor-B, promotes interstitial stem cell migration. This finding provides perspective to an approachable mechanism for improving stem cell homing towards dystrophic muscles.


Sign in / Sign up

Export Citation Format

Share Document