Short-Term Tensile Strength of Carbon Fiber-Reinforced Polymer Laminates for Flexural Strengthening of Concrete Girders

2001 ◽  
Vol 98 (4) ◽  
2019 ◽  
Vol 14 ◽  
pp. 155892501985001 ◽  
Author(s):  
Chenggao Li ◽  
Guijun Xian

The elevated temperature resistance and even fire resistance of carbon fiber-reinforced polymer composites were critical concerns in many applications. These properties of a carbon fiber-reinforced polymer depend not only on the degradation of the polymer matrix but also on that of the carbon fibers under elevated temperatures. In this study, influences of elevated temperatures (by 700°C for 30 min) in air on the mechanical properties and microstructures of a carbon fiber were investigated experimentally. It was found that the tensile strength and modulus as well as the diameters of the carbon fibers were reduced remarkably when the treatment temperatures exceeded 500°C. At the same time, the content of the structurally ordered carbonaceous components on the surface of carbon fibers and the graphite microcrystal size were reduced, while the graphite interlayer spacing ( d002) was enhanced. The deteriorated tensile modulus was attributed to the reduced graphite microcrystal size and the reduced thickness of the skin layer of the carbon fiber, while the degraded tensile strength was mainly attributed to the weakened cross-linking between the graphite planes.


2019 ◽  
Vol 53 (20) ◽  
pp. 2901-2907 ◽  
Author(s):  
Andrea Corrado ◽  
Wilma Polini

The cure process of carbon fiber-reinforced polymer laminates induces residual stress inside the parts that causes geometrical unconformities. The most important unconformity is the spring-in that means the deviation of the flange-to-flange angle from the design angle. The spring-in value depends on some process parameters, such as the lay-up sequence of the plies, as demonstrated in previous works. The aim of this work is to study the dependence of the spring-in on the deviations in the orientation of the plies due to a hand process. A numerical tool was developed and experimentally tested.


Materials ◽  
2020 ◽  
Vol 13 (1) ◽  
pp. 222
Author(s):  
Liangliang Wei ◽  
Ji-Hua Zhu ◽  
Zhijun Dong ◽  
Jun Liu ◽  
Wei Liu ◽  
...  

Carbon fiber reinforced polymer (CFRP) has been used as a dual-functional material in a hybrid intervention system (ICCP-SS) which integrates the impressed current cathodic protection (ICCP) and structural strengthening (SS). The mechanical behavior of CFRP as an anode has been investigated in some solution environments. However, the anodic and mechanical behavior of CFRP bonded to concrete is unclear. This paper focuses on the anodic and mechanical performance of CFRP bonded to the chloride-contaminated concrete by conducting an electrochemical (EC) test. The method of bonding the CFRP to the concrete and the shape of the steel embedded in the concrete were considered. The current densities of 20 mA/m2 and 100 mA/m2 were applied during 120-day and 310-day EC tests. The electrode potentials and driving voltages were recorded, and the bond interfaces of the CFRP were inspected after EC test. The residual tensile strength and failure modes of the CFRP were analyzed after tensile tests. Finally, the long-term performance of CFRP as a dual-functional material in ICCP-SS system was discussed. Results show that the externally bonding CFRP in ICCP-SS system can not only protect the steel in chloride-contaminated concrete effectively but also maintain 70% of the original tensile strength of CFRP at a charge density of 744 A·h/m2. The expected service period of CFRP as a dual-functional material bonded to the chloride-contaminated concrete was determined to be more than 42.5 years.


2014 ◽  
Vol 49 (10) ◽  
pp. 1223-1240 ◽  
Author(s):  
Soraya Catche ◽  
Robert Piquet ◽  
Frédéric Lachaud ◽  
Bruno Castanié ◽  
Audrey Benaben

Sign in / Sign up

Export Citation Format

Share Document