scholarly journals Effect of ball end milling parameters on surface and subsurface of Inconel-718

2014 ◽  
Vol 4 (1) ◽  
pp. 66 ◽  
Author(s):  
Nandkumar Bhopale ◽  
Raju Pawade
2015 ◽  
Vol 15 (3) ◽  
pp. 293-300 ◽  
Author(s):  
Nandkumar N. Bhopale ◽  
Nilesh Nikam ◽  
Raju S. Pawade

AbstractThis paper presents the application of Response Surface Methodology (RSM) coupled with Teaching Learning Based Optimization Technique (TLBO) for optimizing surface integrity of thin cantilever type Inconel 718 workpiece in ball end milling. The machining and tool related parameters like spindle speed, milling feed, axial depth of cut and tool path orientation are optimized with considerations of multiple response like deflection, surface roughness, and micro hardness of plate. Mathematical relationship between process parameters and deflection, surface roughness and microhardness are found out by using response surface methodology. It is observed that after optimizing the process that at the spindle speed of 2,000 rpm, feed 0.05 mm/tooth/rev, plate thickness of 5.5 mm and 15° workpiece inclination with horizontal tool path gives favorable surface integrity.


2014 ◽  
Author(s):  
Nandkumar N. Bhopale ◽  
Raju S. Pawade

The paper presents the surface integrity analysis in ball end milling of thin shaped cantilever plate of Inconel 718. It is noticed that the workpiece deflection has significantly contributed to machined surface integrity in terms of surface topography and subsurface microhardness. The ball end milling performed with 15° workpiece inclination with horizontal tool path produced higher surface integrity which varies with the location of machined surface region. In general, the mid portion of the machined plate shows lower surface roughness and microhardness with less surface defects.


2010 ◽  
Vol 443 ◽  
pp. 353-358 ◽  
Author(s):  
Harshad A. Sonawane ◽  
Suhas S. Joshi

The ball end milling process, commonly used for generating complex shapes, involves continuous variation in the uncut chip dimensions, which depends on the cutter geometry and the machining parameters. The proposed analytical model evaluates the undeformed and the deformed chip dimensions including chip length, width and thickness. The undeformed and deformed chip dimensions, is a function of cutter rotation angle, instantaneous cutter radius, helix angle, and other processing parameters. The surface quality, in the form of surface roughness, during high-speed ball end milling of Inconel 718 is also analysed in this paper.


2017 ◽  
Vol 20 (6) ◽  
pp. 1681-1689 ◽  
Author(s):  
Junteng Wang ◽  
Dinghua Zhang ◽  
Baohai Wu ◽  
Ming Luo

Sign in / Sign up

Export Citation Format

Share Document