Premature interlude detection and classification of breast cancer using ANN classifier

2017 ◽  
Vol 7 (1.1) ◽  
pp. 587
Author(s):  
A N. Sruthi ◽  
M Shyamala Devi ◽  
P Balamurugan

Breast cancer has emerged as the main reason behind most cancers deaths amoungwomen. To decrease the emerging issue, cancer should be handled at the early stage, however it's extremely complicated to discover associated diagnose tumors at a premature stage. Manual analysis of cancer is found to be extremely time consumingprocess andincompetent in several scenarios. As a result, there exists a choice for sensibleschemes that identifies the cancerous cell,simultaneouslydeprived of any participation of people and with excessive accuracy. Here, formulated automatic method victimization Artificial Neural Network (ANN)as better intellectual system for breast cancer classification. Image Processingtakes part avitalplace in cancer recognition once input document is inside the style of pixels. Feature extraction of image could be very vital in Mammogram classification. Alternatives feature extraction methods have been developed recently. An absolutely distinctive function extraction method isused for classification of conventional and Normal cancer image classification. This methodology can offer maximum accuracy at a high speed. The applied math parameter encompass entropy, mean, power, correlation, texture, variance .This constraints can act as a inputs to ANN which is adequate enough to identify and provides the outcome whether or not patient is suffering from cancerous or not.

Author(s):  
K. Taifi ◽  
S. Safi ◽  
M. Fakir ◽  
A. Elbalaoui

The high incidence of breast cancer has increased significantly in the recent years. The most familiar breast tumors types are mass and microcalcifications (Mcs). Mammogram is considered the most reliable method in early detection of breast cancer. Computer-aided diagnosis system can be very helpful for radiologist in detection and diagnosing abnormalities earlier and faster than traditional screening programs. Several techniques can be used to accomplish this task. In this work, the authors present a preprocessing method, based on homomorphic filtering and wavelet, to extract the abnormal Mcs in mammographic images. The authors use four different methods of feature extraction for classification of normal and abnormal patterns in mammogram. Four different feature extraction methods are used here are Wavelet, Gist, Gabor and Tamura. A classification system based on neural network and nearest neighbor classification is used.


Sensors ◽  
2019 ◽  
Vol 19 (4) ◽  
pp. 916 ◽  
Author(s):  
Wen Cao ◽  
Chunmei Liu ◽  
Pengfei Jia

Aroma plays a significant role in the quality of citrus fruits and processed products. The detection and analysis of citrus volatiles can be measured by an electronic nose (E-nose); in this paper, an E-nose is employed to classify the juice which is stored for different days. Feature extraction and classification are two important requirements for an E-nose. During the training process, a classifier can optimize its own parameters to achieve a better classification accuracy but cannot decide its input data which is treated by feature extraction methods, so the classification result is not always ideal. Label consistent KSVD (L-KSVD) is a novel technique which can extract the feature and classify the data at the same time, and such an operation can improve the classification accuracy. We propose an enhanced L-KSVD called E-LCKSVD for E-nose in this paper. During E-LCKSVD, we introduce a kernel function to the traditional L-KSVD and present a new initialization technique of its dictionary; finally, the weighted coefficients of different parts of its object function is studied, and enhanced quantum-behaved particle swarm optimization (EQPSO) is employed to optimize these coefficients. During the experimental section, we firstly find the classification accuracy of KSVD, and L-KSVD is improved with the help of the kernel function; this can prove that their ability of dealing nonlinear data is improved. Then, we compare the results of different dictionary initialization techniques and prove our proposed method is better. Finally, we find the optimal value of the weighted coefficients of the object function of E-LCKSVD that can make E-nose reach a better performance.


MethodsX ◽  
2021 ◽  
Vol 8 ◽  
pp. 101166
Author(s):  
Timothy J. Fawcett ◽  
Chad S. Cooper ◽  
Ryan J. Longenecker ◽  
Joseph P. Walton

2014 ◽  
Vol 2014 ◽  
pp. 1-12 ◽  
Author(s):  
Manab Kumar Das ◽  
Samit Ari

Classification of electrocardiogram (ECG) signals plays an important role in clinical diagnosis of heart disease. This paper proposes the design of an efficient system for classification of the normal beat (N), ventricular ectopic beat (V), supraventricular ectopic beat (S), fusion beat (F), and unknown beat (Q) using a mixture of features. In this paper, two different feature extraction methods are proposed for classification of ECG beats: (i) S-transform based features along with temporal features and (ii) mixture of ST and WT based features along with temporal features. The extracted feature set is independently classified using multilayer perceptron neural network (MLPNN). The performances are evaluated on several normal and abnormal ECG signals from 44 recordings of the MIT-BIH arrhythmia database. In this work, the performances of three feature extraction techniques with MLP-NN classifier are compared using five classes of ECG beat recommended by AAMI (Association for the Advancement of Medical Instrumentation) standards. The average sensitivity performances of the proposed feature extraction technique for N, S, F, V, and Q are 95.70%, 78.05%, 49.60%, 89.68%, and 33.89%, respectively. The experimental results demonstrate that the proposed feature extraction techniques show better performances compared to other existing features extraction techniques.


2009 ◽  
Vol 56 (3) ◽  
pp. 871-879 ◽  
Author(s):  
Stephen J. Preece ◽  
John Yannis Goulermas ◽  
Laurence P. J. Kenney ◽  
David Howard

2021 ◽  
Vol 9 (2) ◽  
pp. 10-15
Author(s):  
Harendra Singh ◽  
Roop Singh Solanki

In this research paper, a new modified approach is proposed for brain tumor classification as well as feature extraction from Magnetic Resonance Imaging (MRI) after pre-processing of the images. The discrete wavelet transformation (DWT) technique is used for feature extraction from MRI images and Artificial Neural Network (ANN) is used for the classification of the type of tumor according to extracted features. Mean, Standard deviation, Variance, Entropy, Skewness, Homogeneity, Contrast, Correlation are the main features used to classify the type of tumor. The proposed model can give a better result in comparison with other available techniques in less computational time as well as a high degree of accuracy. The training and testing accuracies of the proposed model are 100% and 98.20% with a 98.70 % degree of precision respectively.


2020 ◽  
Vol 37 (5) ◽  
pp. 812-822
Author(s):  
Behnam Asghari Beirami ◽  
Mehdi Mokhtarzade

In this paper, a novel feature extraction technique called SuperMNF is proposed, which is an extension of the minimum noise fraction (MNF) transformation. In SuperMNF, each superpixel has its own transformation matrix and MNF transformation is performed on each superpixel individually. The basic idea behind the SuperMNF is that each superpixel contains its specific signal and noise covariance matrices which are different from the adjacent superpixels. The extracted features, owning spatial-spectral content and provided in the lower dimension, are classified by maximum likelihood classifier and support vector machines. Experiments that are conducted on two real hyperspectral images, named Indian Pines and Pavia University, demonstrate the efficiency of SuperMNF since it yielded more promising results than some other feature extraction methods (MNF, PCA, SuperPCA, KPCA, and MMP).


Sign in / Sign up

Export Citation Format

Share Document