scholarly journals Performance Evaluation of Thermal Enhanced Oil Recovery by In-situ Combustion

2018 ◽  
Vol 7 (2.20) ◽  
pp. 52
Author(s):  
D Sairam ◽  
G Reshma ◽  
Arjun P ◽  
Y Deepu

Thermal methods of enhanced oil recovery and especially the in-situ combustion known to the efficient methods among the known enhanced oil recovery methods. In this method heat is added to the reservoir to reduce the oil viscosity. So, that it can be more efficiently driven to the producing well. However the experimental analysis of ISC to understand its operation is known to be expensive. Therefore we have developed a 1D model using STARS module of CMG where in we have Cartesian grid. To this we have given and given i, j, k values. Later porosity, Temperature and initial pressures are given. For setting the well we have used injector and producer. After checking errors we have validated the model. It is evident from the performance plots that the temperature along the core is a function of the gas injected and the oil saturation. However the as the temperature moves along the reservoir from injection well the oil saturation is observed to decrease in the vicinity of the well and start to build away from the injection well towards the production well. This is work provides a platform to understands the combustion propagation and its role in improving the oil recoveries  

2009 ◽  
Vol 12 (04) ◽  
pp. 508-517 ◽  
Author(s):  
Alexandre Lapene ◽  
Louis Castanier ◽  
Gerald Debenest ◽  
Michel Yves Quintard ◽  
Arjan Matheus Kamp ◽  
...  

Summary In-Situ Combustion. In-situ combustion (ISC) is an enhanced oil-recovery method. Enhanced oil recovery is broadly described as a group of techniques used to extract crude oil from the subsurface by the injection of substances not originally present in the reservoir with or without the introduction of extraneous energy (Lake 1996). During ISC, a combustion front is propagated through the reservoir by injected air. The heat generated results in higher temperatures leading to a reduction in oil viscosity and an increase of oil mobility. There are two types of ISC processes, dry and wet combustion. In the dry-combustion process, a large part of the heat generated is left unused downstream of the combustion front in the burned-out region. During the wet-injection process, water is co-injected with the air to recover some of the heat remaining behind the combustion zone. ISC is a very complex process. From a physical point of view, it is a problem coupling transport in porous media, chemistry, and thermodynamics. It has been studied for several decades, and the technique has been applied in the field since the 1950s. The complexity was not well understood earlier by ISC operators. This resulted in a high rate of project failures in the 1960s, and contributed to the misconception that ISC is a problem-prone process with low probability of success. However, ISC is an attractive oil-recovery process and capable of recovering a high percentage of oil-in-place, if the process is designed correctly and implemented in the right type of reservoir (Sarathi 1999). This paper investigates the effect of water on the reaction kinetics of a heavy oil by way of ramped temperature oxidation under various conditions. Reactions. Earlier studies about reaction kinetic were conducted by Bousaid and Ramey (1968), Weijdema (1968), Dabbous and Fulton (1974), and Thomas et al. (1979). In these experiments, temperature of a sample of crude oil and solid matrix was increased over time or kept constant. The produced gas was analyzed to determine the concentrations of outlet gases, such as carbon dioxide, carbon monoxide, and oxygen. This kind of studies shows two types of oxidation reactions, the Low-Temperature Oxidation (LTO) and the High-Temperature Oxidation (HTO) (Burger and Sahuquet 1973; Fassihi et al. 1984a; Mamora et al. 1993). In 1984, Fassihi et al. (1984b) presented an analytical method to obtain kinetics parameters. His method requires several assumptions.


Fuel ◽  
2021 ◽  
Vol 285 ◽  
pp. 119216
Author(s):  
Seyedsaeed Mehrabi-Kalajahi ◽  
Mikhail A. Varfolomeev ◽  
Chengdong Yuan ◽  
Almaz L. Zinnatullin ◽  
Nikolay O. Rodionov ◽  
...  

2013 ◽  
Vol 16 (02) ◽  
pp. 172-182 ◽  
Author(s):  
Anthony Kovscek ◽  
Louis M. Castanier ◽  
Margot Gerritsen

2018 ◽  
Vol 40 (2) ◽  
pp. 85-90
Author(s):  
Yani Faozani Alli ◽  
Edward ML Tobing ◽  
Usman Usman

The formation of microemulsion in the injection of surfactant at chemical flooding is crucial for the effectiveness of injection. Microemulsion can be obtained either by mixing the surfactant and oil at the surface or injecting surfactant into the reservoir to form in situ microemulsion. Its translucent homogeneous mixtures of oil and water in the presence of surfactant is believed to displace the remaining oil in the reservoir. Previously, we showed the effect of microemulsion-based surfactant formulation to reduce the interfacial tension (IFT) of oil and water to the ultralow level that suffi cient enough to overcome the capillary pressure in the pore throat and mobilize the residual oil. However, the effectiveness of microemulsion flooding to enhance the oil recovery in the targeted representative core has not been investigated.In this article, the performance of microemulsion-based surfactant formulation to improve the oil recovery in the reservoir condition was investigated in the laboratory scale through the core flooding experiment. Microemulsion-based formulation consist of 2% surfactant A and 0.85% of alkaline sodium carbonate (Na2CO3) were prepared by mixing with synthetic soften brine (SSB) in the presence of various concentration of polymer for improving the mobility control. The viscosity of surfactant-polymer in the presence of alkaline (ASP) and polymer drive that used for chemical injection slug were measured. The tertiary oil recovery experiment was carried out using core flooding apparatus to study the ability of microemulsion-based formulation to recover the oil production. The results showed that polymer at 2200 ppm in the ASP mixtures can generate 12.16 cP solution which is twice higher than the oil viscosity to prevent the fi ngering occurrence. Whereas single polymer drive at 1300 ppm was able to produce 15.15 cP polymer solution due to the absence of alkaline. Core flooding experiment result with design injection of 0.15 PV ASP followed by 1.5 PV polymer showed that the additional oil recovery after waterflood can be obtained as high as 93.41% of remaining oil saturation after waterflood (Sor), or 57.71% of initial oil saturation (Soi). Those results conclude that the microemulsion-based surfactant flooding is the most effective mechanism to achieve the optimum oil recovery in the targeted reservoir.


2007 ◽  
Vol 194 (8) ◽  
pp. 995-1021 ◽  
Author(s):  
Nader Mahinpey ◽  
Aprameya Ambalae ◽  
Koorosh Asghari

Sign in / Sign up

Export Citation Format

Share Document