Enhancing data transfer architecture using LSB steganography combined with reed solomon code

2018 ◽  
Vol 7 (2.29) ◽  
pp. 24
Author(s):  
H A. Jassim ◽  
Z K. Taha ◽  
M A. Alsaedi ◽  
B M. Albaker

In this paper, new steganographic systems employing least significant bit technique and wavelet transform for embedding are proposed. These systems incorporate threshold level technique to enhance the performance of embedding scheme. Further, Forward error correcting code is used to improve the system performance. In the proposed system, the cover image is a gray image and the wavelet transform is applied directly. The secret image is coded using Reed Solomon code for preparing to embedding process. The locations of embedding are randomly selected according to pseudorandom number sequence. The combination between the ciphering process and steganography gives the system high level of security. This idea makes unauthorized retrieval is difficult. The simulation results show that the stego image is visually similar to the original one and does not have any suspension about embedded image. The extracted secret image is similar to the original secret image. The results indicate that using one-level Haar wavelet transform increases the capacity of the secret image that can be embedded. Hence, the steganographic goals are achieved in these systems. The proposed systems are simulated using MATLAB® software package.  

Author(s):  
Ashwaq T. Hashim ◽  
Suhad A. Ali

<p>Multiple Secret Image Sharing scheme is a protected approach to transmit more than one secret image over a communication channel. Conventionally, only single secret image is shared over a channel at a time. But as technology grew up, there is a need to share more than one secret image. A fast (r, n) multiple secret image sharing scheme based on discrete haar wavelet transform has been proposed to encrypt m secret images into n noisy images that are stored over different servers. To recover m secret images r noise images are required. Haar Discrete Wavelet Transform (DWT) is employed as reduction process of each secret image to its quarter size (i.e., LL subband). The LL subbands for all secrets have been combined in one secret that will be split later into r subblocks randomly using proposed high pseudo random generator. Finally, a developed (r, n) threshold multiple image secret sharing based one linear system has been used to generate unrelated shares. The experimental results showed that the generated shares are more secure and unrelated. The size reductions of generated shares were 1:4r of the size of each of original image. Also, the randomness test shows a good degree of randomness and security.</p>


Author(s):  
Kokila B. Padeppagol ◽  
Sandhya Rani M H

Image steganography is an art of hiding images secretly within another image. There are several ways of performing image steganography; one among them is the spatial approach.The most popular spatial domain approach of image steganography is the Least Significant Bit (LSB) method, which hides the secret image pixel information in the LSB of the cover image pixel information. In this paper a LSB based steganography approach is used to design hardware architecture for the Image steganography. The Discrete Wavelet Transform (DWT) is used here to transform the cover image into higher and lower wavelet coefficients and use these coefficients in hiding the secret image. the design also includes encryption of secret image data, to provide a higher level of security to the secret image. The steganography system involving the stegno module and a decode module is designed here. The design was simulated, synthesized and implemented on Artix -7 FPGA. The operation hiding and retrieving images was successfully verified through simulations.


2019 ◽  
Vol 62 (11) ◽  
pp. 1639-1655
Author(s):  
Manashee Kalita ◽  
Themrichon Tuithung ◽  
Swanirbhar Majumder

Abstract Steganography is a data hiding technique, which is used for securing data. Both spatial and transform domains are used to implement a steganography method. In this paper, a novel transform domain method is proposed to provide a better data hiding method. The method uses a multi-resolution transform function, integer wavelet transform (IWT) that decomposes an image into four subbands: low-low, low-high, high-low and high-high subband. The proposed method utilizes only the three subbands keeping the low-low subband untouched which helps to improve the quality of the stego image. The method applies a coefficient value differencing approach to determine the number of secret bits to be embedded in the coefficients. The method shows a good performance in terms of embedding capacity, imperceptibility and robustness. A number of metrics are computed to show the quality of the stego image. It can also withstand RS steganalysis, Chi-squared test and Subtractive Pixel Adjacency Matrix steganalysis successfully. The deformation of the histogram and Pixel Difference Histogram for different embedding percentages are also demonstrated, which show a significant similarity with the original cover image. The proposed method shows an achievement of 2.3bpp embedding capacity with a good quality of stego image.


2019 ◽  
Vol 8 (4) ◽  
pp. 3369-3373

In present world data transfer using the internet is growing. It is very easy and fast way to transfer information like confidential documents, economic transactions, business applications and other covert information over internet. With the advent and growth of internet, people are more concerned about security of information. Data Security is important while data is transferred over internet because any illegal user can access important and private data also make it worthless. Research in data security area will help government agencies, military organization and private companies to securely transmit their confidential data over internet. From past few years various steganography techniques have been developed to hide secret message using various multimedia objects having large amount of redundant data to support steganography. In this paper introduction about steganography, related concepts and implementation of commonly used spatial domain techniques like LSB(Least Significant Bit Technique) with modulus, PVD(Pixel Value Difference) with LSB replacement and adaptive data hiding over edges with LSB are considered. It is observed(while visual, statistical analysis and experiments were carried out) with benchmark cover and stego objects that embedding same amount of secret data in each pixel leads to more visible distortions in a stego image because all pixels do not bear same amount of changes and this effect is more observed in smooth area then edges. Improving stego image imperceptibility and adjusting hiding capacity adaptively are major related research challenges about spatial domain techniques.


2021 ◽  
Vol 7 ◽  
pp. e359
Author(s):  
Ravikiran Yeleswarapu ◽  
Arun K. Somani

As DRAM technology continues to evolve towards smaller feature sizes and increased densities, faults in DRAM subsystem are becoming more severe. Current servers mostly use CHIPKILL based schemes to tolerate up-to one/two symbol errors per DRAM beat. Such schemes may not detect multiple symbol errors arising due to faults in multiple devices and/or data-bus, address bus. In this article, we introduce Single Symbol Correction Multiple Symbol Detection (SSCMSD)—a novel error handling scheme to correct single-symbol errors and detect multi-symbol errors. Our scheme makes use of a hash in combination with Error Correcting Code (ECC) to avoid silent data corruptions (SDCs). We develop a novel scheme that deploys 32-bit CRC along with Reed-Solomon code to implement SSCMSD for a ×4 based DDR4 system. Simulation based experiments show that our scheme effectively guards against device, data-bus and address-bus errors only limited by the aliasing probability of the hash. Our novel design enabled us to achieve this without introducing additional READ latency. We need 19 chips per rank, 76 data bus-lines and additional hash-logic at the memory controller.


Sign in / Sign up

Export Citation Format

Share Document