A Data-Driven Approach to Determine the Single Droplet Post-Impingement Pattern on a Dry Wall Using Statistical Machine Learning Classification Methods

2021 ◽  
Author(s):  
Jiachen Zhai ◽  
Seong-Young Lee
Author(s):  
Ahmad Iwan Fadli ◽  
Selo Sulistyo ◽  
Sigit Wibowo

Traffic accident is a very difficult problem to handle on a large scale in a country. Indonesia is one of the most populated, developing countries that use vehicles for daily activities as its main transportation.  It is also the country with the largest number of car users in Southeast Asia, so driving safety needs to be considered. Using machine learning classification method to determine whether a driver is driving safely or not can help reduce the risk of driving accidents. We created a detection system to classify whether the driver is driving safely or unsafely using trip sensor data, which include Gyroscope, Acceleration, and GPS. The classification methods used in this study are Random Forest (RF) classification algorithm, Support Vector Machine (SVM), and Multilayer Perceptron (MLP) by improving data preprocessing using feature extraction and oversampling methods. This study shows that RF has the best performance with 98% accuracy, 98% precision, and 97% sensitivity using the proposed preprocessing stages compared to SVM or MLP.


Author(s):  
Lidong Wu

The No-Free-Lunch theorem is an interesting and important theoretical result in machine learning. Based on philosophy of No-Free-Lunch theorem, we discuss extensively on the limitation of a data-driven approach in solving NP-hard problems.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Trevor David Rhone ◽  
Wei Chen ◽  
Shaan Desai ◽  
Steven B. Torrisi ◽  
Daniel T. Larson ◽  
...  

Abstract We use a data-driven approach to study the magnetic and thermodynamic properties of van der Waals (vdW) layered materials. We investigate monolayers of the form $$\hbox {A}_2\hbox {B}_2\hbox {X}_6$$ A 2 B 2 X 6 , based on the known material $$\hbox {Cr}_2\hbox {Ge}_2\hbox {Te}_6$$ Cr 2 Ge 2 Te 6 , using density functional theory (DFT) calculations and machine learning methods to determine their magnetic properties, such as magnetic order and magnetic moment. We also examine formation energies and use them as a proxy for chemical stability. We show that machine learning tools, combined with DFT calculations, can provide a computationally efficient means to predict properties of such two-dimensional (2D) magnetic materials. Our data analytics approach provides insights into the microscopic origins of magnetic ordering in these systems. For instance, we find that the X site strongly affects the magnetic coupling between neighboring A sites, which drives the magnetic ordering. Our approach opens new ways for rapid discovery of chemically stable vdW materials that exhibit magnetic behavior.


Atmosphere ◽  
2019 ◽  
Vol 10 (5) ◽  
pp. 251 ◽  
Author(s):  
Wael Ghada ◽  
Nicole Estrella ◽  
Annette Menzel

Rain microstructure parameters assessed by disdrometers are commonly used to classify rain into convective and stratiform. However, different types of disdrometer result in different values for these parameters. This in turn potentially deteriorates the quality of rain type classifications. Thies disdrometer measurements at two sites in Bavaria in southern Germany were combined with cloud observations to construct a set of clear convective and stratiform intervals. This reference dataset was used to study the performance of classification methods from the literature based on the rain microstructure. We also explored the possibility of improving the performance of these methods by tuning the decision boundary. We further identified highly discriminant rain microstructure parameters and used these parameters in five machine-learning classification models. Our results confirm the potential of achieving high classification performance by applying the concepts of machine learning compared to already available methods. Machine-learning classification methods provide a concrete and flexible procedure that is applicable regardless of the geographical location or the device. The suggested procedure for classifying rain types is recommended prior to studying rain microstructure variability or any attempts at improving radar estimations of rain intensity.


2020 ◽  
Author(s):  
Jung-Hyun Kim ◽  
Simon I. Briceno ◽  
Cedric Y. Justin ◽  
Dimitri Mavris

Author(s):  
Soo Min Kwon ◽  
Anand D. Sarwate

Statistical machine learning algorithms often involve learning a linear relationship between dependent and independent variables. This relationship is modeled as a vector of numerical values, commonly referred to as weights or predictors. These weights allow us to make predictions, and the quality of these weights influence the accuracy of our predictions. However, when the dependent variable inherently possesses a more complex, multidimensional structure, it becomes increasingly difficult to model the relationship with a vector. In this paper, we address this issue by investigating machine learning classification algorithms with multidimensional (tensor) structure. By imposing tensor factorizations on the predictors, we can better model the relationship, as the predictors would take the form of the data in question. We empirically show that our approach works more efficiently than the traditional machine learning method when the data possesses both an exact and an approximate tensor structure. Additionally, we show that estimating predictors with these factorizations also allow us to solve for fewer parameters, making computation more feasible for multidimensional data.


Sign in / Sign up

Export Citation Format

Share Document