scholarly journals Integrating Infiltration Facility to Urban Road Drainage

2018 ◽  
Vol 7 (3.18) ◽  
pp. 31
Author(s):  
Darrien Yau Seng Mah ◽  
Tze Chiat Ng ◽  
Frederik Josep Putuhena

It is proposed to merge an infiltration facility to the conventional road curb system. Towards this end, a Storm Water Management Model (SWMM) is developed to explore the effectiveness of the proposed component at Riveria housing estate, Kota Samarahan, Sarawak. The findings show that the integration is effective in reducing peak runoff. The results indicate that a scenario of hollow infiltration trench achieves zero runoff, and a scenario of filled infiltration trench has a 43.6% reduction in runoff compared with existing road drainage condition. Furthermore, the hollow infiltration trench is found to be the best among all the given scenarios. The SWMM modelling results provide a tool to quantitatively measure the probable use of the proposed measures to improve the existing road drainage system.  

Proceedings ◽  
2018 ◽  
Vol 2 (11) ◽  
pp. 640 ◽  
Author(s):  
Ioannis M. Kourtis ◽  
Vassilios A. Tsihrintzis ◽  
Evangelos Baltas

The present work aims at quantifying the benefit of Low Impact Development (LID) practices in reducing peak runoff and runoff volume, and at comparing LID practices to conventional stormwater solutions. The hydrologic-hydraulic model used was the Storm Water Management Model (SWMM5.1). The LID practices modeled were: (i) Green roofs; and (ii) Permeable pavements. Each LID was tested independently and compared to two different conventional practices, i.e., sewer enlargement and detention pond design. Results showed that for small storm events LID practices are comparable to conventional measures, in reducing flooding. Overall, smaller storms should be included in the design process.


2015 ◽  
Vol 744-746 ◽  
pp. 1146-1150
Author(s):  
Zheng Rong Fu ◽  
Jia Xin Zhuang ◽  
Liang Zhu Wang

The drainage system of a part of a university campus was tapped using SWMM (Storm Water Management Model). Local drainage discharge capacity was studied under different design storm return period. Results show that flooding and overload at some junctions and in some conduits are doubled with the increase of design rain return period from one year to five year, which may deteriorate the traffic and road base.


2019 ◽  
Vol 21 (2) ◽  
pp. 1-11
Author(s):  
Yesid Carvajal ◽  
Camilo Ocampo ◽  
Luis E. Peña

Occurrence of extreme hydroclimatological events associated with climatic variability and climate change, along with deficient development of urban drainage systems, have increased the occurrence of floods in cities. This study analyzes the hydraulic behavior of the urban drainage system in the east of Cali, during the occurrence of maximum rainfall events, supported by the Storm Water Management Model. Three simulation climate scenarios were developed: (i) current scenario with a return time of 2 and 10 years, (ii). a climate scenario for the year 2030 and (iii) a climate scenario for the year 2040. The model presented an acceptable grade of calibration, with a Nash-Sutcliffe number greater than 0.5 in simulated events, therefore the results obtained appropriately describe the behavior of surface runoff in the study area, in terms of spatial and temporal resolution. In this way, critical points of the drainage system were identified. This information may be potentially useful in the planning of future hydraulic works, leading to an improvement of the hydraulic behavior of the system, and the protection of life and property of the inhabitants of the city.


2018 ◽  
Vol 45 ◽  
pp. 00058 ◽  
Author(s):  
Ireneusz Nowogoński ◽  
Ewa Ogiołda

Using SWMM 5.1 (Storm Water Management Model) software, a model of sewage system functioning in Głogów was developed. It was calibrated based on the results of field studies from the years 2011– 14, while the properness of its activity was verified for the results of measurements carried out during the period 1998–2000. The verification of the model showed acceptable discrepancies between the measured and simulated values of channel depth. Factors which caused differences were indicated and, on the basis of this, conclusions pertaining to further studies were formulated.


2015 ◽  
Vol 31 (4) ◽  
pp. 462-476 ◽  
Author(s):  
Gaurav V. Jain ◽  
Ritesh Agrawal ◽  
R.J. Bhanderi ◽  
P. Jayaprasad ◽  
J.N. Patel ◽  
...  

2020 ◽  
Vol 3 (2) ◽  
pp. 143-154
Author(s):  
Rahmat Faizal ◽  
Noerman Adi Prasetya ◽  
Zikri Alstony ◽  
Aditya Rahman

Tarakan City experiences problems with standing water during the rainy season, especially in the west Tarakan sub-district which is the center of Tarakan. This puddle not only submerged settlements and offices but also shops and access roads that caused considerable economic losses. An evaluation was carried out by using the Storm Water Management Model (SWMM). SWMM is a rainfall-runoff simulation model used for simulating the quantity and quality of surface runoff from urban areas. Based on the evaluation using SWMM software, the drainage system in Tarakan, especially in Jalan Mulwarman has several inundated channels, namely channels 2, 3, 4, 5, 6, 7, 11, 12, 13, 14. This is influenced by the dimensions of the drainage channel that cannot accommodate existing water runoff and sediment thickness that covers the drainage channels so that the capacity is reduced, if it rains it will cause puddles at several points in Tarakan City. In order to deal with these puddles, it is necessary to change the dimensions of the channel and routinely dredge sediments that cover the drainage channels.


Sign in / Sign up

Export Citation Format

Share Document