scholarly journals An Effective Method to Denoiseeeg, ECG and PPG Signals based on Meyer Wavelet Transform

2018 ◽  
Vol 7 (3.34) ◽  
pp. 678
Author(s):  
P Thamarai ◽  
Dr K.Adalarasu

In this analysis, the prevailing role of the wavelet transform in the interrogation of the ECG is discussed in detail, where both the constant and the discrete transform are considered in turn.A Wavelet denoising is functional on the original signal to eradicate high frequency noise, and then a process based on Meyer wavelet transform combined with adaptive filter is functional to eradicate the motion artifact. This approach uses Meyer Wavelet decomposition to extract the motion artifact, which is subsequently utilized as the reference input of an adaptive filter for noise cancellation. The technique diminishes the overhead of the circuit because it does not need a separate collection of reference input signal which link to noise. Testing results illustrate that this approach can efficiently remove motion artifact and make better the signal quality. 

2013 ◽  
Vol 860-863 ◽  
pp. 2791-2795
Author(s):  
Qian Xiao ◽  
Yu Shan Jiang ◽  
Ru Zheng Cui

Aiming at the large calculation workload of adaptive algorithm in adaptive filter based on wavelet transform, affecting the filtering speed, a wavelet-based neural network adaptive filter is constructed in this paper. Since the neural network has the ability of distributed storage and fast self-evolution, use Hopfield neural network to implement adaptive filter LMS algorithm in this filter so as to improve the speed of operation. The simulation results prove that, the new filter can achieve rapid real-time denoising.


Author(s):  
Alla Levina ◽  
Sergey Taranov

Theory of wavelet transform is a powerful tool for image and video processing. Mathematical concepts of wavelet transform and filter bank have been studied carefully in many works. This work presents application of new construction of linear and robust codes based on wavelet decomposition and its application in ADV612 chips. We present the model of the error-coding scheme that allows to detect errors in the ADV612 chips with high probability. In our work, we will show that developed and presented scheme of protection drastically improves the resistance of ADV612 chips to malfunctions and errors.


2012 ◽  
Vol 562-564 ◽  
pp. 1394-1397
Author(s):  
Yu Hua Dong ◽  
Hai Chun Ning

This paper proposes a method of wavelet transform combined with SVD (Singular Value Extracting), and the abnormal data elimination in its trajectory measurement is studied. After the wavelet decomposition of the observed data, combining the approximate component and the detail component, the phase space is reconstructed. The increment criterion of singular entropy is used for the input observed matrix of SVD, and the singular value is selected. Then the original signal is reconstructed by SVD inverse transform. This method overcomes the distortion problem of data end in phase space reconstruction by Hankel matrix. The reconstructed phase space by components of wavelet decomposition is orthogonal. So it further improves the accuracy of noise reduction and abnormal detection by SVD. The results of experimental data processing show the effectiveness of this method proposed in the paper.


2021 ◽  
pp. 2140019
Author(s):  
Yanru Zhao ◽  
Qipeng Shao ◽  
Dongjie Niu

Pulse oximetry saturation (SpO2) is a main parameter that reflects the condition of the human cardiovascular system. It is best to detect SpO2 non-destructively with photoplethysmography (PPG). The embedded technique was used to control the dual-wavelength LED illuminating the fingertips, photoelectric sensors to detect reflection data and, then, upload the data to computers, IIR filtering and S-G smoothing filtering on MatLab to process the collected data. The results is shown that the discreteness of the processed data was reduced by 2–6% and the high-frequency noise and motion artifact were removed effectively. It would provide some references for improving the accuracy of the pulse oxygen saturation monitoring system in a complex environment.


2019 ◽  
Vol 29 (02) ◽  
pp. 2050024
Author(s):  
Mahesh B. Dembrani ◽  
K. B. Khanchandani ◽  
Anita Zurani

The automatic recognition of QRS complexes in an Electrocardiography (ECG) signal is a critical step in any programmed ECG signal investigation, particularly when the ECG signal taken from the pregnant women additionally contains the signal of the fetus and some motion artifact signals. Separation of ECG signals of mother and fetus and investigation of the cardiac disorders of the mother are demanding tasks, since only one single device is utilized and it gets a blend of different heart beats. In order to resolve such problems we propose a design of new reconfigurable Subtractive Savitzky–Golay (SSG) filter with Digital Processor Back-end (DBE) in this paper. The separation of signals is done using Independent Component Analysis (ICA) algorithm and then the motion artifacts are removed from the extracted mother’s signal. The combinational use of SSG filter and DBE enhances the signal quality and helps in detecting the QRS complex from the ECG signal particularly the R peak accurately. The experimental results of ECG signal analysis show the importance of our proposed method.


Acoustics ◽  
2019 ◽  
Vol 1 (3) ◽  
pp. 590-607 ◽  
Author(s):  
Sanjay Kumar ◽  
Heow Lee

Owing to a steep rise in urban population, there has been a continuous growth in construction of buildings, public or private transport like cars, motorbikes, trains, and planes at a global level. Hence, urban noise has become a major issue affecting the health and quality of human life. In the current environmental scenario, architectural acoustics has been directed towards controlling and manipulating sound waves at a desired level. Structural engineers and designers are moving towards green technologies, which may help improve the overall comfort level of residents. A variety of conventional sound absorbing materials are being used to reduce noise, but attenuation of low-frequency noise still remains a challenge. Recently, acoustic metamaterials that enable low-frequency sound manipulation, mitigation, and control have been widely used for architectural acoustics and traffic noise mitigation. This review article provides an overview of the role of acoustic metamaterials for architectural acoustics and road noise mitigation applications. The current challenges and prominent future directions in the field are also highlighted.


Sign in / Sign up

Export Citation Format

Share Document