scholarly journals Edge Version Molecular Descriptors of Tetrameric 1, 3 Adamantane

2018 ◽  
Vol 7 (4.10) ◽  
pp. 403
Author(s):  
G. Mohanappriya ◽  
D. Vijiyalakshmi

Molecular descriptors (Topological indices) are the numerical invariants of a molecular graph which distinguish its topology. In this article, we compute edge version of topological indices such as Zagreb index, Atom bond connectivity index, Fourth atom bond connectivity index, Geometric Arithmetic index and Fifth Geometric Arithmetic index of tetrameric 1,3 adamantane. 

Processes ◽  
2019 ◽  
Vol 7 (7) ◽  
pp. 433 ◽  
Author(s):  
Jialin Zheng ◽  
Zahid Iqbal ◽  
Asfand Fahad ◽  
Asim Zafar ◽  
Adnan Aslam ◽  
...  

Topological indices have been computed for various molecular structures over many years. These are numerical invariants associated with molecular structures and are helpful in featuring many properties. Among these molecular descriptors, the eccentricity connectivity index has a dynamic role due to its ability of estimating pharmaceutical properties. In this article, eccentric connectivity, total eccentricity connectivity, augmented eccentric connectivity, first Zagreb eccentricity, modified eccentric connectivity, second Zagreb eccentricity, and the edge version of eccentric connectivity indices, are computed for the molecular graph of a PolyEThyleneAmidoAmine (PETAA) dendrimer. Moreover, the explicit representations of the polynomials associated with some of these indices are also computed.


2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
Muhammad Asad Ali ◽  
Muhammad Shoaib Sardar ◽  
Imran Siddique ◽  
Dalal Alrowaili

A measurement of the molecular topology of graphs is known as a topological index, and several physical and chemical properties such as heat formation, boiling point, vaporization, enthalpy, and entropy are used to characterize them. Graph theory is useful in evaluating the relationship between various topological indices of some graphs derived by applying certain graph operations. Graph operations play an important role in many applications of graph theory because many big graphs can be obtained from small graphs. Here, we discuss two graph operations, i.e., double graph and strong double graph. In this article, we will compute the topological indices such as geometric arithmetic index GA , atom bond connectivity index ABC , forgotten index F , inverse sum indeg index ISI , general inverse sum indeg index ISI α , β , first multiplicative-Zagreb index PM 1   and second multiplicative-Zagreb index PM 2 , fifth geometric arithmetic index GA 5 , fourth atom bond connectivity index ABC 4 of double graph, and strong double graph of Dutch Windmill graph D 3 p .


2019 ◽  
Vol 17 (1) ◽  
pp. 663-670 ◽  
Author(s):  
Maqsood Ahmad ◽  
Muhammad Javaid ◽  
Muhammad Saeed ◽  
Chahn Yong Jung

AbstractBakelite network $BN_{m}^{n}$is a molecular graph of bakelite, a pioneering and revolutionary synthetic polymer (Thermosetting Plastic) and regarded as the material of a thousand uses. In this paper, we aim to compute various degree-based topological indices of a molecular graph of bakelite network $BN_{m}^{n}$. These molecular descriptors play a fundamental role in QSPR/QSAR studies in describing the chemical and physical properties of Bakelite network $BN_{m}^{n}$. We computed atom-bond connectivity ABC its fourth version ABC4 geometric arithmetic GA its fifth version GA5 Narumi-Katayama, sum-connectivity and Sanskruti indices, first, second, modified and augmented Zagreb indices, inverse and general Randic’ indices, symmetric division, harmonic and inverse sum indices of $BN_{m}^{n}$.


2018 ◽  
Vol 7 (2) ◽  
pp. 123-129 ◽  
Author(s):  
Adnan Aslam ◽  
Muhammad Kamran Jamil ◽  
Wei Gao ◽  
Waqas Nazeer

AbstractA numerical number associated to the molecular graphGthat describes its molecular topology is called topological index. In the study ofQSARandQSPR, topological indices such as atom-bond connectivity index, Randić connectivity index, geometric index, etc. help to predict many physico-chemical properties of the chemical compound under study. Dendrimers are macromolecules and have many applications in chemistry, especially in self-assembly procedures and host-guest reactions. The aim of this report is to compute degree-based topological indices, namely the fourth atom-bond connectivity index and fifth geometric arithmetic index of poly propyl ether imine, zinc porphyrin, and porphyrin dendrimers.


2020 ◽  
Vol 2020 ◽  
pp. 1-7 ◽  
Author(s):  
Xuewu Zuo ◽  
Jia-Bao Liu ◽  
Hifza Iqbal ◽  
Kashif Ali ◽  
Syed Tahir Raza Rizvi

Topological indices like generalized Randić index, augmented Zagreb index, geometric arithmetic index, harmonic index, product connectivity index, general sum-connectivity index, and atom-bond connectivity index are employed to calculate the bioactivity of chemicals. In this paper, we define these indices for the line graph of k-subdivided linear [n] Tetracene, fullerene networks, tetracenic nanotori, and carbon nanotube networks.


Processes ◽  
2019 ◽  
Vol 7 (7) ◽  
pp. 462
Author(s):  
Sumiya Nasir ◽  
Fozia Bashir Farooq ◽  
Nazeran Idrees ◽  
Muhammad Jawwad Saif ◽  
Fatima Saeed

A topological index of a graph is a single numeric quantity which relates the chemical structure with its underlying physical and chemical properties. Topological indices of a nanosheet can help us to understand the properties of the material better. This study deals with computation of degree-dependent topological indices like the Randic index, first Zagreb index, second Zagreb index, geometric arithmetic index, atom bond connectivity index, sum connectivity index and hyper Zagreb index of nanosheet covered by C3 and C6. Furthermore, M-polynomial of the nanosheet is also computed, which provides an alternate way to express the topological indices.


2016 ◽  
Vol 94 (8) ◽  
pp. 687-698 ◽  
Author(s):  
Shehnaz Akhter ◽  
Muhammad Imran

The degree-based topological indices correlate certain physicochemical properties such as boiling point, strain energy, and stability, etc., of certain chemical compounds. Among the major classes of topological indices are the distance-based topological indices, degree-based topological indices, and counting-related polynomials and corresponding indices of graphs. Among all of the degree-based indices, namely the first general Zagreb index, general Rndić connectivity index, general sum-connectivity index, atom–bond connectivity index (ABC), and geometric–arithmetic index (GA), are most important due to their chemical significance. In this paper, we compute the first general Zagreb index, general Randić connectivity index, general sum-connectivity index, ABC, GA, ABC4, and GA5 indices of hexagonal parallelogram P(m,n) nanotubes, triangular benzenoid Gn, and zigzag-edge coronoid fused with starphene ZCS(k,l,m) nanotubes by using the line graphs of the subdivision of these chemical graphs.


2018 ◽  
Vol 2018 ◽  
pp. 1-11 ◽  
Author(s):  
Muhammad Imran ◽  
Abdul Qudair Baig ◽  
Waqas Khalid

The topological descriptors are the numerical invariants associated with a chemical graph and are helpful in predicting their bioactivity and physiochemical properties. These descriptors are studied and used in mathematical chemistry, medicines, and drugs designs and in other areas of applied sciences. In this paper, we study the two chemical trees, namely, the fractal tree and Cayley tree. We also compute their topological indices based on degree concept. These indices include atom bond connectivity index, geometric arithmetic index and their fourth and fifth versions, Sanskruti index, augmented Zagreb index, first and second Zagreb indices, and general Randic index for α={-1,1,1/2,-1/2}. Furthermore, we give closed analytical results of these indices for fractal trees and Cayley trees.


2018 ◽  
Vol 16 (1) ◽  
pp. 1184-1188 ◽  
Author(s):  
Nazeran Idrees ◽  
Muhammad Jawwad Saif ◽  
Afshan Sadiq ◽  
Asia Rauf ◽  
Fida Hussain

AbstractIn chemical graph theory, a single numeric number related to a chemical structure is called a topological descriptor or topological index of a graph. In this paper, we compute analytically certain topological indices for H-Naphtalenic nanosheet like Randic index, first Zagreb index, second Zagreb index, geometric arithmetic index, atom bond connectivity index, sum connectivity index and hyper-Zagreb index using edge partition technique. The first multiple Zagreb index and the second multiple Zagreb index of the nanosheet are also discussed in this paper.


2021 ◽  
Vol 2021 ◽  
pp. 1-20
Author(s):  
Tanweer Ul Islam ◽  
Zeeshan Saleem Mufti ◽  
Aqsa Ameen ◽  
Muhammad Nauman Aslam ◽  
Ali Tabraiz

A topological index, also known as connectivity index, is a molecular structure descriptor calculated from a molecular graph of a chemical compound which characterizes its topology. Various topological indices are categorized based on their degree, distance, and spectrum. In this study, we calculated and analyzed the degree-based topological indices such as first general Zagreb index M r G , geometric arithmetic index GA G , harmonic index H G , general version of harmonic index H r G , sum connectivity index λ G , general sum connectivity index λ r G , forgotten topological index F G , and many more for the Robertson apex graph. Additionally, we calculated the newly developed topological indices such as the AG 2 G and Sanskruti index for the Robertson apex graph G.


Sign in / Sign up

Export Citation Format

Share Document