scholarly journals On Certain Aspects of Topological Indices

2021 ◽  
Vol 2021 ◽  
pp. 1-20
Author(s):  
Tanweer Ul Islam ◽  
Zeeshan Saleem Mufti ◽  
Aqsa Ameen ◽  
Muhammad Nauman Aslam ◽  
Ali Tabraiz

A topological index, also known as connectivity index, is a molecular structure descriptor calculated from a molecular graph of a chemical compound which characterizes its topology. Various topological indices are categorized based on their degree, distance, and spectrum. In this study, we calculated and analyzed the degree-based topological indices such as first general Zagreb index M r G , geometric arithmetic index GA G , harmonic index H G , general version of harmonic index H r G , sum connectivity index λ G , general sum connectivity index λ r G , forgotten topological index F G , and many more for the Robertson apex graph. Additionally, we calculated the newly developed topological indices such as the AG 2 G and Sanskruti index for the Robertson apex graph G.

2014 ◽  
Vol 79 (5) ◽  
pp. 557-563 ◽  
Author(s):  
Ivan Gutman ◽  
Lingping Zhong ◽  
Kexiang Xu

The atom-bond connectivity (ABC) index is a much-studied molecular structure descriptor, based on the degrees of the vertices of the molecular graph. Recently, another vertex-degree-based topological index - the harmonic index (H) - attracted attention and gained popularity. We show how ABC and H are related.


2020 ◽  
Vol 2020 ◽  
pp. 1-7 ◽  
Author(s):  
Xuewu Zuo ◽  
Jia-Bao Liu ◽  
Hifza Iqbal ◽  
Kashif Ali ◽  
Syed Tahir Raza Rizvi

Topological indices like generalized Randić index, augmented Zagreb index, geometric arithmetic index, harmonic index, product connectivity index, general sum-connectivity index, and atom-bond connectivity index are employed to calculate the bioactivity of chemicals. In this paper, we define these indices for the line graph of k-subdivided linear [n] Tetracene, fullerene networks, tetracenic nanotori, and carbon nanotube networks.


2018 ◽  
Vol 7 (4.10) ◽  
pp. 403
Author(s):  
G. Mohanappriya ◽  
D. Vijiyalakshmi

Molecular descriptors (Topological indices) are the numerical invariants of a molecular graph which distinguish its topology. In this article, we compute edge version of topological indices such as Zagreb index, Atom bond connectivity index, Fourth atom bond connectivity index, Geometric Arithmetic index and Fifth Geometric Arithmetic index of tetrameric 1,3 adamantane. 


2021 ◽  
Vol 2021 ◽  
pp. 1-18
Author(s):  
Muhammad Haroon Aftab ◽  
Muhammad Rafaqat ◽  
M. Hussain ◽  
Tariq Zia

In this research paper, we will compute the topological indices (degree based) such as the ordinary generalized geometric-arithmetic (OGA) index, first and second Gourava indices, first and second hyper-Gourava indices, general Randic´ index R γ G , for  γ = ± 1 , ± 1 / 2 , harmonic index, general version of the harmonic index, atom-bond connectivity (ABC) index, SK, SK1, and SK2 indices, sum-connectivity index, general sum-connectivity index, and first general Zagreb and forgotten topological indices for various types of chemical networks such as the subdivided polythiophene network, subdivided hexagonal network, subdivided backbone DNA network, and subdivided honeycomb network. The discussion on the aforementioned networks will give us very remarkable results by using the aforementioned topological indices.


2018 ◽  
Vol 7 (4) ◽  
pp. 6276
Author(s):  
Rajesh Kanna ◽  
Roopa S ◽  
PARASHIVAMURTHY H L

Graph theory has provided chemists with a variety of useful tools, such as topological indices. A topological index Top(G) of a graph G is a number with the property that for every graph H isomorphic to G, Top(H) = Top(G). In this paper, we compute ABC index, ABC4 index, Randi´c connectivity index, Sum connectivity index, GA index , GA5 index, First Zagreb index, Second Zagreb index, First Multiple Zagreb index, Second Multiple Zagreb index, Augmented Zagreb index, Harmonic index and Hyper Zagreb index, First Zagreb polynomial, Second Zagreb polynomial, Third Zagreb polynomial, Forgotten polynomials, Forgotten topological index and Symmetric division index of vitamin D3.


2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
Jia-Bao Liu ◽  
Ting Zhang ◽  
Sakander Hayat

It is one of the core problems in the study of chemical graph theory to study the topological index of molecular graph and the internal relationship between its structural properties and some invariants. In recent years, topological index has been gradually applied to the models of QSAR and QSPR . In this work, using the definition of the ABC index, AZI index, GA index, the multiplicative version of ordinary first Zagreb index, the second multiplicative Zagreb index, and Zagreb index, we calculate the degree-based topological indices of some networks. Then, the above indices’ formulas are obtained.


2017 ◽  
Vol 72 (7) ◽  
pp. 647-654 ◽  
Author(s):  
M. Javaid ◽  
Jia-Bao Liu ◽  
M. A. Rehman ◽  
Shaohui Wang

AbstractA numeric quantity that characterises the whole structure of a molecular graph is called the topological index that predicts the physical features, chemical reactivities, and boiling activities of the involved chemical compound in the molecular graph. In this article, we give new mathematical expressions for the multiple Zagreb indices, the generalised Zagreb index, the fourth version of atom-bond connectivity (ABC4) index, and the fifth version of geometric-arithmetic (GA5) index of TiO2[m, n]. In addition, we compute the latest developed topological index called by Sanskruti index. At the end, a comparison is also included to estimate the efficiency of the computed indices. Our results extended some known conclusions.


2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
Muhammad Asad Ali ◽  
Muhammad Shoaib Sardar ◽  
Imran Siddique ◽  
Dalal Alrowaili

A measurement of the molecular topology of graphs is known as a topological index, and several physical and chemical properties such as heat formation, boiling point, vaporization, enthalpy, and entropy are used to characterize them. Graph theory is useful in evaluating the relationship between various topological indices of some graphs derived by applying certain graph operations. Graph operations play an important role in many applications of graph theory because many big graphs can be obtained from small graphs. Here, we discuss two graph operations, i.e., double graph and strong double graph. In this article, we will compute the topological indices such as geometric arithmetic index GA , atom bond connectivity index ABC , forgotten index F , inverse sum indeg index ISI , general inverse sum indeg index ISI α , β , first multiplicative-Zagreb index PM 1   and second multiplicative-Zagreb index PM 2 , fifth geometric arithmetic index GA 5 , fourth atom bond connectivity index ABC 4 of double graph, and strong double graph of Dutch Windmill graph D 3 p .


2019 ◽  
Vol 11 (01) ◽  
pp. 1950006 ◽  
Author(s):  
Sourav Mondal ◽  
Nilanjan De ◽  
Anita Pal

Topological indices are numeric quantities that transform chemical structure to real number. Topological indices are used in QSAR/QSPR studies to correlate the bioactivity and physiochemical properties of molecule. In this paper, some newly designed neighborhood degree-based topological indices named as neighborhood Zagreb index ([Formula: see text]), neighborhood version of Forgotten topological index ([Formula: see text]), modified neighborhood version of Forgotten topological index ([Formula: see text]), neighborhood version of second Zagreb index ([Formula: see text]) and neighborhood version of hyper Zagreb index ([Formula: see text]) are obtained for Graphene and line graph of Graphene using subdivision idea. In addition, these indices are compared graphically with respect to their response for Graphene and line graph of subdivision of Graphene.


J ◽  
2019 ◽  
Vol 2 (3) ◽  
pp. 384-409
Author(s):  
Sourav Mondal ◽  
Nilanjan De ◽  
Anita Pal

Topological indices are numeric quantities that describes the topology of molecular structure in mathematical chemistry. An important area of applied mathematics is the chemical reaction network theory. Real-world problems can be modeled using this theory. Due to its worldwide applications, chemical networks have attracted researchers since their foundation. In this report, some silicate and oxide networks are studied, and exact expressions of some newly-developed neighborhood degree-based topological indices named as the neighborhood Zagreb index ( M N ), the neighborhood version of the forgotten topological index ( F N ), the modified neighborhood version of the forgotten topological index ( F N ∗ ), the neighborhood version of the second Zagreb index ( M 2 ∗ ), and neighborhood version of the hyper Zagreb index ( H M N ) are obtained for the aforementioned networks. In addition, a comparison among all the indices is shown graphically.


Sign in / Sign up

Export Citation Format

Share Document