scholarly journals Topological Characterization of Nanosheet Covered by C3 and C6

Processes ◽  
2019 ◽  
Vol 7 (7) ◽  
pp. 462
Author(s):  
Sumiya Nasir ◽  
Fozia Bashir Farooq ◽  
Nazeran Idrees ◽  
Muhammad Jawwad Saif ◽  
Fatima Saeed

A topological index of a graph is a single numeric quantity which relates the chemical structure with its underlying physical and chemical properties. Topological indices of a nanosheet can help us to understand the properties of the material better. This study deals with computation of degree-dependent topological indices like the Randic index, first Zagreb index, second Zagreb index, geometric arithmetic index, atom bond connectivity index, sum connectivity index and hyper Zagreb index of nanosheet covered by C3 and C6. Furthermore, M-polynomial of the nanosheet is also computed, which provides an alternate way to express the topological indices.

2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
Muhammad Asad Ali ◽  
Muhammad Shoaib Sardar ◽  
Imran Siddique ◽  
Dalal Alrowaili

A measurement of the molecular topology of graphs is known as a topological index, and several physical and chemical properties such as heat formation, boiling point, vaporization, enthalpy, and entropy are used to characterize them. Graph theory is useful in evaluating the relationship between various topological indices of some graphs derived by applying certain graph operations. Graph operations play an important role in many applications of graph theory because many big graphs can be obtained from small graphs. Here, we discuss two graph operations, i.e., double graph and strong double graph. In this article, we will compute the topological indices such as geometric arithmetic index GA , atom bond connectivity index ABC , forgotten index F , inverse sum indeg index ISI , general inverse sum indeg index ISI α , β , first multiplicative-Zagreb index PM 1   and second multiplicative-Zagreb index PM 2 , fifth geometric arithmetic index GA 5 , fourth atom bond connectivity index ABC 4 of double graph, and strong double graph of Dutch Windmill graph D 3 p .


2021 ◽  
Vol 31 (2) ◽  
pp. 145-161
Author(s):  
Shibsankar Das ◽  
◽  
Shikha Rai ◽  

A topological index is a numerical quantity that defines a chemical descriptor to report several physical, biological and chemical properties of a chemical structure. In recent literature, various degree-based topological indices of a molecular structure are easily calculated by deriving a M-polynomial of that structure. In this paper, we first determine the expression of a M-polynomial of the triangular Hex-derived network of type three of dimension n and then obtain the corresponding degree-based topological indices from the closed form of M-polynomial. In addition, we use Maple software to represent the M-polynomial and the concerned degree-based topological indices pictorially for different dimensions.


2018 ◽  
Vol 74 (1-2) ◽  
pp. 35-43
Author(s):  
Wei Gao ◽  
Muhammad Kamran Siddiqui ◽  
Najma Abdul Rehman ◽  
Mehwish Hussain Muhammad

Abstract Dendrimers are large and complex molecules with very well defined chemical structures. More importantly, dendrimers are highly branched organic macromolecules with successive layers or generations of branch units surrounding a central core. Topological indices are numbers associated with molecular graphs for the purpose of allowing quantitative structure-activity relationships. These topological indices correlate certain physico-chemical properties such as the boiling point, stability, strain energy, and others, of chemical compounds. In this article, we determine hyper-Zagreb index, first multiple Zagreb index, second multiple Zagreb index, and Zagreb polynomials for hetrofunctional dendrimers, triangular benzenoids, and nanocones.


2018 ◽  
Vol 74 (1-2) ◽  
pp. 25-33 ◽  
Author(s):  
Zahid Iqbal ◽  
Muhammad Ishaq ◽  
Adnan Aslam ◽  
Wei Gao

AbstractPrevious studies show that certain physical and chemical properties of chemical compounds are closely related with their molecular structure. As a theoretical basis, it provides a new way of thinking by analyzing the molecular structure of the compounds to understand their physical and chemical properties. The molecular topological indices are numerical invariants of a molecular graph and are useful to predict their bioactivity. Among these topological indices, the eccentric-connectivity index has a prominent place, because of its high degree of predictability of pharmaceutical properties. In this article, we compute the closed formulae of eccentric-connectivity–based indices and its corresponding polynomial for water-soluble perylenediimides-cored polyglycerol dendrimers. Furthermore, the edge version of eccentric-connectivity index for a new class of dendrimers is determined. The conclusions we obtained in this article illustrate the promising application prospects in the field of bioinformatics and nanomaterial engineering.


Author(s):  
P.S. Hemavathi ◽  
V. Lokesha ◽  
P.S. Reddy ◽  
R. Shruti

Topological graph indices have been used in a lot of areas to study required properties of different objects such as atoms and molecules. Such indices have been described and studied by many mathematicians and chemists since most graphs are generated from molecules by replacing each atom with a vertex and each chemical bond with an edge. These indices are also topological graph invariants measuring several chemical, physical, biological, pharmacological, pharmaceutical, etc. properties of graphs corresponding to real life situations. The degree-based topological indices are used to correlate the physical and chemical properties of a molecule with its chemical structure. Boron nanotubular structures are high-interest materials due to the presence of multicenter bonds and have novel electronic properties. These materials have some important issues in nanodevice applications like mechanical and thermal stability. Therefore, they require theoretical studies on the other properties. In this paper, we compute the third Zagreb index, harmonic index, forgotten index, inverse sum index, modified Zagreb index and symmetric division deg index by applying subdivision and semi total point graph for boron triangular and boron-alpha nanotubes.


2021 ◽  
Vol 2021 ◽  
pp. 1-13
Author(s):  
Muhammad Asif ◽  
Muhammad Hussain ◽  
Hamad Almohamedh ◽  
Khalid M Alhamed ◽  
Rana Alabdan ◽  
...  

Topology of fullerenes, carbon nanotubes, and nanocones has considerable worth due to their effective applications in nanotechnology. These are emerging materials of practical application in gas storage devises, nanoelectronics devices, energy storage, biosensor, and chemical probes. The topological indices are graph invariant used to investigate the physical and chemical properties of the compounds such as boiling point, stability, and strain energy through associated chemical graph of the underlying compound. We computed recently modified Zagreb connection indices of nanocones CNC 4 n , CNC 5 n , and CNC 6 n and generalized our findings up to a large class of CNC k n . Topological characterization of nanocones via these indices is mathematically novel and assists to enable its emerging use in nanotechnology. For computation and verification of results, we use Mathematica software.


Complexity ◽  
2022 ◽  
Vol 2022 ◽  
pp. 1-13
Author(s):  
Lili Gu ◽  
Shamaila Yousaf ◽  
Akhlaq Ahmad Bhatti ◽  
Peng Xu ◽  
Adnan Aslam

A topological index is a numeric quantity related with the chemical composition claiming to correlate the chemical structure with different chemical properties. Topological indices serve to predict physicochemical properties of chemical substance. Among different topological indices, degree-based topological indices would be helpful in investigating the anti-inflammatory activities of certain chemical networks. In the current study, we determine the neighborhood second Zagreb index and the first extended first-order connectivity index for oxide network O X n , silicate network S L n , chain silicate network C S n , and hexagonal network H X n . Also, we determine the neighborhood second Zagreb index and the first extended first-order connectivity index for honeycomb network H C n .


2018 ◽  
Vol 2018 ◽  
pp. 1-11 ◽  
Author(s):  
Jia-Bao Liu ◽  
Hani Shaker ◽  
Imran Nadeem ◽  
Muhammad Hussain

The degree-based topological indices are used to correlate the physical and chemical properties of a molecule with its chemical structure. Boron nanotubular structures are high-interest materials due to the presence of multicenter bonds and have novel electronic properties. These materials have some important issues in nanodevice applications like mechanical and thermal stability. Therefore, they require theoretical studies on the other properties. In this paper, we present certain degree-based topological indices such as ABC, the fourth ABC, GA, and the fifth GA indices for boron triangular and boron-α nanotubes.


2020 ◽  
Vol 8 ◽  
Author(s):  
Yuhong Huo ◽  
Haidar Ali ◽  
Muhammad Ahsan Binyamin ◽  
Syed Sheraz Asghar ◽  
Usman Babar ◽  
...  

In theoretical chemistry, the numerical parameters that are used to characterize the molecular topology of graphs are called topological indices. Several physical and chemical properties like boiling point, entropy, heat formation, and vaporization enthalpy of chemical compounds can be determined through these topological indices. Graph theory has a considerable use in evaluating the relation of various topological indices of some derived graphs. In this article, we will compute the topological indices like Randić, first Zagreb, harmonic, augmented Zagreb, atom-bond connectivity, and geometric-arithmetic indices for chain hex-derived network of type 3 CHDN3(m,n) for different cases of m and n. We will also compute the numerical computation and graphical view to justify our results.Mathematics Subject Classification: 05C12, 05C90


2018 ◽  
Vol 16 (1) ◽  
pp. 1184-1188 ◽  
Author(s):  
Nazeran Idrees ◽  
Muhammad Jawwad Saif ◽  
Afshan Sadiq ◽  
Asia Rauf ◽  
Fida Hussain

AbstractIn chemical graph theory, a single numeric number related to a chemical structure is called a topological descriptor or topological index of a graph. In this paper, we compute analytically certain topological indices for H-Naphtalenic nanosheet like Randic index, first Zagreb index, second Zagreb index, geometric arithmetic index, atom bond connectivity index, sum connectivity index and hyper-Zagreb index using edge partition technique. The first multiple Zagreb index and the second multiple Zagreb index of the nanosheet are also discussed in this paper.


Sign in / Sign up

Export Citation Format

Share Document