scholarly journals Tensile Behavior of Alternative Reinforcing Materials as Fiber Reinforced Cementitious Mortar FRCM

2018 ◽  
Vol 7 (4.20) ◽  
pp. 239
Author(s):  
Mohammed A. Mousa

The adoption of new reinforcing and retrofitting materials provide an alternative and affordable techniques that can be utilized in low-income communities. FRCM is comprised of a broad spectrum family of reinforcing materials such that it allowed utilizing affordable local alternatives such as fishing net FN and welded wire steel mesh WWSM. The composite effectiveness stems from the compatible inorganic matrix properties which have similar properties to the substrate unlike other composites such as FRP. The tensile response of FN and WWSM and their mortar composites has been experimentally studied to characterize their strength, deformation, and the bonding between the reinforcement and the mortar. Experimental investigations on dog-bone composites specimens with their materials samples subjected to uniaxial tensile load were performed. The experimental campaign included testing 12 composite specimens taking into account multiple parameters like material, thread thickness, and the layer effect. The results show comparable strengths and high deformation capacity (12.5 times) of FN to the WWSM. Finally, the SEM imaging shows a well-impregnation between the mortar and the reinforcement of both materials. The tensile response of the composite emphasizes its potential as structural retrofitting and hazard mitigation technique for local builders and house owners in developing countries.  

Metals ◽  
2019 ◽  
Vol 9 (6) ◽  
pp. 632 ◽  
Author(s):  
Ahmed M. Sayed

The perforated steel sheets have many uses, so they should be studied under the influence of the uniaxial tensile load. The presence of these holes in the steel sheets certainly affects the mechanical properties. This paper aims at studying the behavior of the stress-strain engineering relationships of the perforated steel sheets. To achieve this, the three-dimensional finite element (FE) model is mainly designed to investigate the effect of this condition. Experimental tests were carried out on solid specimens to be used in the test of model accuracy of the FE simulation. Simulation testing shows that the FE modeling revealed the ability to calculate the stress-strain engineering relationships of perforated steel sheets. It can be concluded that the effect of a perforated rhombus shape is greater than the others, and perforated square shape has no effect on the stress-strain engineering relationships. The efficiency of the perforated staggered or linearly distribution shapes with the actual net area on the applied loads has the opposite effect, as it reduces the load capacity for all types of perforated shapes. Despite the decrease in load capacity, it improves the properties of the steel sheets.


Author(s):  
Logan Rowe ◽  
Alexander J. Kaczkowski ◽  
Tung-Wei Lin ◽  
Gavin Horn ◽  
Harley Johnson

Abstract A nondestructive photoelastic method is presented for characterizing surface microcracks in monocrystalline silicon wafers, calculating the strength of the wafers, and predicting Weibull parameters under various loading conditions. Defects are first classified from through thickness infrared photoelastic images using a support vector machine learning algorithm. Characteristic wafer strength is shown to vary with the angle of applied uniaxial tensile load, showing greater strength when loaded perpendicular to the direction of wire motion than when loaded along the direction of wire motion. Observed variations in characteristic strength and Weibull shape modulus with applied tensile loading direction stem from the distribution of crack orientations and the bulk stress field acting on the microcracks. Using this method it is possible to improve manufacturing processes for silicon wafers by rapidly, accurately, and nondestructively characterizing large batches in an automated way.


2021 ◽  
Author(s):  
Fuhui Shen ◽  
Kai Chen ◽  
Junhe Lian ◽  
Sebastian Münstermann

Two categories of experiments have been performed to obtain the experimental forming limits of a ferritic stainless steel from uniaxial to equibiaxial tension, including Nakajima tests and tensile tests of flat specimens with different geometries of the central hole as well as the notched dog bone. The plasticity behavior of the investigated material is described using an evolving non-associated anisotropic plasticity model, which is calibrated based on experimental results of uniaxial tensile tests along different loading directions. A damage mechanics model is calibrated and validated based on the global force and displacement response of tensile tests. Finite element simulations of the Nakajima tests and the tensile tests of various geometries have been performed using the anisotropic material model. A novel spatio-temporal method is developed to evaluate the forming limits under different stress states by quantitatively characterizing the plastic strain distribution on the specimen surface. The forming limits have been independently determined from finite element simulation results of tensile specimens and Nakajima specimens using the spatio-temporal evaluation method. The forming limits obtained from numerical simulations of these two types of experiments are in good agreement with experimental results.


2021 ◽  
Author(s):  
Ciara Durcan ◽  
Mokarram Hossain ◽  
Gregory Chagnon ◽  
Djordje Peric ◽  
Lara Bsiesy ◽  
...  

Technological advancements in the field of robotics have led to endoscopic biopsy devices able to extract diseased tissue from between the layers of the gastrointestinal tract. Despite this, the layer-dependent properties of these tissues have yet to be mechanically characterised using human tissue. In this study, the ex vivo mechanical properties of the passive muscularis propia layer of the human oesophagus were extensively investigated. For this, a series of uniaxial tensile tests were conducted. The results displayed hyperelastic behaviour, while the differences between loading the tissue in both the longitudinal and circumferential directions showcased its anisotropy. The anisotropy of the muscular layer was present at different strain rates, with the longitudinal direction being consistently stiffer than the circumferential one. The circumferential direction was found to have little strain-rate dependency, while the longitudinal direction results suggest pronounced strain-rate-dependent behaviour. The repeated trials showed larger variation in terms of stress for a given strain in the longitudinal direction compared to the circumferential direction. The possible causes of variation between trials are discussed, and the experimental findings are linked to the histological analysis which was carried out via various staining methods. Finally, the direction-dependent experimental data was simulated using an anisotropic, hyperelastic model.


2014 ◽  
Vol 1611 ◽  
pp. 1-6
Author(s):  
F. J. Baldenebro-Lopez ◽  
J. H. Castorena-Gonzalez ◽  
J. A. Baldenebro-Lopez ◽  
J.I. Velazquez-Dimas ◽  
J. E. Ledezma-Sillas ◽  
...  

ABSTRACTThe increasing use of polymeric reinforcements in concrete structures requires either the development of a new design theory or the adaptation of current designs considering the engineering properties of this type of materials. In this work a method for calculating the deflections of reinforced concrete elements is proposed, which can be used in predicting the flexural behavior of longitudinally reinforced concrete with PET strips in amounts up to 1%. The model theory assumes that concrete has a tensile load capacity different to zero, characterized by a uniaxial tensile stress-strain diagram. A series of tests were conducted to corroborate the validity of the suggested method, showing that the theory also correctly predicts the creep deformation post-cracking. The deflection results of reinforced concrete with recycled PET strips are presented. The tests are carried out by a simple beam with center-point loading, using three different amounts of reinforcement and comparing the experimental results with the theoretical results of the proposed model.


2012 ◽  
Vol 730-732 ◽  
pp. 1006-1011
Author(s):  
Ricardo Simões ◽  
Júlio C. Viana ◽  
Gustavo R. Dias ◽  
António M. Cunha

We have employed molecular dynamics simulations to study the behavior of virtual polymeric materials under an applied uniaxial tensile load. Through computer simulations, one can obtain experimentally inaccessible information about phenomena taking place at the molecular and microscopic levels. Not only can the global material response be monitored and characterized along time, but the response of macromolecular chains can be followed independently if desired. The computer-generated materials were created by emulating the step-wise polymerization, resulting in self-avoiding chains in 3D with controlled degree of orientation along a certain axis. These materials represent a simplified model of the lamellar structure of semi-crystalline polymers, being comprised of an amorphous region surrounded by two crystalline lamellar regions. For the simulations, a series of materials were created, varying i) the lamella thickness, ii) the amorphous region thickness, iii) the preferential chain orientation, and iv) the degree of packing of the amorphous region. Simulation results indicate that the lamella thickness has the strongest influence on the mechanical properties of the lamella-amorphous structure, which is in agreement with experimental data. The other morphological parameters also affect the mechanical response, but to a smaller degree. This research follows previous simulation work on the crack formation and propagation phenomena, deformation mechanisms at the nanoscale, and the influence of the loading conditions on the material response. Computer simulations can improve the fundamental understanding about the phenomena responsible for the behavior of polymeric materials, and will eventually lead to the design of knowledge-based materials with improved properties.


2007 ◽  
Vol 20 (9) ◽  
pp. S211-S216 ◽  
Author(s):  
Kozo Osamura ◽  
Michinaka Sugano ◽  
Shutaro Machiya ◽  
Hiroki Adachi ◽  
Masugu Sato ◽  
...  

Author(s):  
L. Angela Mihai ◽  
Alain Goriely

We examine solid cellular structures within the theoretical framework of finite elasticity, whereby we assume that the cell wall material is nonlinear elastic. This enables us to identify new mechanical effects that appear in cellular materials when elastically deformed, and to explore the physical properties that influence them. We find that, when a honeycomb structure of hyperelastic material and standard geometry, such as rectangular-, hexagonal- or diamond-shaped cells, contains walls which are inclined relative to an applied uniaxial tensile load, these walls tend to expand both in the direction of the load and in the perpendicular direction, producing an apparent negative Poisson's ratio at local cell level. Moreover, we show that this (negative) Poisson ratio decreases as the magnitude of the tensile load increases. For these structures, Poisson's ratios greater than 0.5 are obtained in uniaxial compression. Similar effects in structures with linearly elastic cell walls do not occur.


Sign in / Sign up

Export Citation Format

Share Document