scholarly journals Lessons from LiDAR data use in the Netherlands

2017 ◽  
Vol 1 (2) ◽  
pp. 661-670 ◽  
Author(s):  
Willem Frans Beex

Light Detection And Ranging or Laser Imaging Detection And Ranging (LiDAR) is not really a new technology. However, it does provide the data from which accurate models of the natural land surface completely stripped of buildings and vegetation can be derived. Interestingly for Cultural Heritage and Archaeology, most of the data is already freely available for research. This is certainly the case in the Netherlands, with the “Actueel Hoogtemodel Nederland 2”, or “AHN2”. The density of the measured points is at least 50 centimetres, which means that the remains of structures larger than one by one metre can be detected. As a result, many unknown structures have been discovered with it. However, these excellent results have blinded many Cultural Heritage and Archaeology practitioners to obvious mistakes when interpreting LiDAR data. This paper is intended to highlight best-practices for the use of LiDAR data by Cultural Heritage professionals.

Author(s):  
Geert-Jan Vis ◽  
Erik van Linden ◽  
Ronald van Balen ◽  
Kim Cohen

Abstract. In the coal mining districts of the Netherlands, Belgium and Germany, we identified 662 previously unidentified depressions at the land surface using LIDAR data. Their density decreases westwards along with deepening of the Carboniferous coal layers, while not changing in dimensions. The timing of their formation based on historical maps and landowner reports, suggests that they mostly formed during the period 1920–1970, the peak of mining activity. Based on their position, density and age, we link the formation of depressions to the coal-mining activities in South Limburg, Germany and Belgium. Our working hypothesis tentatively explains the origin, mechanism of formation and timing of these local subsidence features.


2021 ◽  
Vol 11 (8) ◽  
pp. 3635
Author(s):  
Ioannis Liritzis ◽  
Pantelis Volonakis ◽  
Spyros Vosinakis

In the field of cultural heritage, three-dimensional (3D) reconstruction of monuments is a usual activity for many professionals. The aim in this paper focuses on the new technology educational application combining science, history, and archaeology. Being involved in almost all stages of implementation steps and assessing the level of participation, university students use tools of computer gaming platform and participate in ways of planning the virtual environment which improves their education through e-Learning. The virtual 3D environment is made with different imaging methods (helium-filled balloon, Structure for motion, 3D repository models) and a developmental plan has been designed for use in many future applications. Digital tools were used with 3D reconstructed buildings from the museum archive to Unity 3D for the design. The pilot study of Information Technology work has been employed to introduce cultural heritage and archaeology to university syllabuses. It included students with a questionnaire which has been evaluated accordingly. As a result, the university students were inspired to immerse themselves into the virtual lab, aiming to increasing the level of interaction. The results show a satisfactory learning outcome by an easy to use and real 3D environment, a step forward to fill in needs of contemporary online sustainable learning demands.


2020 ◽  
Vol 13 (1) ◽  
pp. 100
Author(s):  
Kazuho Araki ◽  
Yoshio Awaya

Gaps are important for growth of vegetation on the forest floor. However, monitoring of gaps in large areas is difficult. Airborne light detection and ranging (LiDAR) data make precise gap mapping possible. We formulated a method to describe changes in gaps by time-series tracking of gap area changes using three digital canopy height models (DCHMs) based on LiDAR data collected in 2005, 2011, and 2016 over secondary deciduous broadleaf forest. We generated a mask that covered merging or splitting of gaps in the three DCHMs and allowed us to identify their spatiotemporal relationships. One-fifth of gaps merged with adjacent gaps or split into several gaps between 2005 and 2016. Gap shrinkage showed a strong linear correlation with gap area in 2005, via lateral growth of gap-edge trees between 2005 and 2016, as modeled by a linear regression analysis. New gaps that emerged between 2005 and 2011 shrank faster than gaps present in 2005. A statistical model to predict gap lifespan was developed and gap lifespan was mapped using data from 2005 and 2016. Predicted gap lifespan decreased greatly due to shrinkage and splitting of gaps between 2005 and 2016.


2019 ◽  
Vol 4 (4) ◽  
pp. 265-268
Author(s):  
MICHEL LASCARIS

Living with water. The Dijkenkaart of the Netherlands De Cultural Heritage Agency made an interesting digital map (in GIS) of all the dikes in the Netherlands. This was possible by using existing digital maps, but new research was necessary to make this general overview. There was discussion about the dating of dikes, because dikes can be of medieval origin, but were adjusted over time. Besides dikes, researchers find GIS and historical information on poldermills, kolks, reclamations and pumping stations. That is why this map is called ‘Living with water’, because this information can help addressing new challenges in climate adaptation strategies dealing with water. Everyone can take a look, or download the map in GIS, on www.cultureelerfgoed.nl/onderwerpen/bronnen-en-kaarten/overzicht/levenmet-water-kaart.


Author(s):  
M. Indirli ◽  
M. Forni ◽  
A. Martelli ◽  
B. Spadoni ◽  
A. Dusi ◽  
...  

As described in detail at previous ASME-PVP Conferences and also reminded by separate papers presented this year, large efforts have been devoted by the Italian Agency for New Technology, Energy and the Environment (ENEA), with the cooperation of several further members of the Italian Working Group on Seismic Isolation (GLIS), to the development, validation and application of innovative anti-seismic (IAS) techniques since 1988. To date, considered have been base and floor seismic isolation (SI), energy dissipation through various types of passive devices, hydraulic coupling by means of innovative shock transmitters, systems formed by shape memory alloy devices and more recently, semi-active control of vibrations. New activities at ENEA, which are in progress in the framework of both international and national collaborations, concern the development of new IAS techniques of the aforesaid kinds to be applied to: • civil structures and industrial plants; • cultural heritage structures (CUHESs) to be restored or reconstructed, or masterpieces to be seismically protected. Progress of the work performed for civil and industrial structures has been separately presented at this Conference, while this paper deals with the new development, validation and application activities concerning the IAS techniques applicable to the seismic protection of CUHESs, to which particular attention has been devoted by ENEA for several years. The ongoing activities for CUHESs are being performed in the framework of: • PROSEESM, a national project which foresees pilot applications of the IAS techniques to the restoration of CUHESs damaged by the 1997–98 Marche and Umbria earthquakes; • a feasibilily study for the reconstruction in the original site, with SI and the original masonry materials, of Mevale di Visso, a village in the Marche Region destroyed by the aforesaid event; • a study for the design and application of an innovative three-dimensional SI system for seismic and ambient vibration protection of a roman ship excavated at Ercolano, near Naples.


2009 ◽  
Vol 13 (6) ◽  
pp. 833-845 ◽  
Author(s):  
Z. Su ◽  
W. J. Timmermans ◽  
C. van der Tol ◽  
R. Dost ◽  
R. Bianchi ◽  
...  

Abstract. EAGLE2006 – an intensive field campaign for the advances in land surface hydrometeorological processes – was carried out in the Netherlands from 8th to 18th June 2006, involving 16 institutions with in total 67 people from 16 different countries. In addition to the acquisition of multi-angle and multi-sensor satellite data, several airborne instruments – an optical imaging sensor, an imaging microwave radiometer, and a flux airplane – were deployed and extensive ground measurements were conducted over one grassland site at Cabauw and two forest sites at Loobos and Speulderbos in the central part of the Netherlands. The generated data set is both unique and urgently needed for the development and validation of models and inversion algorithms for quantitative land surface parameter estimation and land surface hydrometeorological process studies. EAGLE2006 was led by the Department of Water Resources of the International Institute for Geo-Information Science and Earth Observation (ITC) and originated from the combination of a number of initiatives supported by different funding agencies. The objectives of the EAGLE2006 campaign were closely related to the objectives of other European Space Agency (ESA) campaign activities (SPARC2004, SEN2FLEX2005 and especially AGRISAR2006). However, one important objective of the EAGLE2006 campaign is to build up a data base for the investigation and validation of the retrieval of bio-geophysical parameters, obtained at different radar frequencies (X-, C- and L-Band) and at hyperspectral optical and thermal bands acquired simultaneously over contrasting vegetated fields (forest and grassland). As such, all activities were related to algorithm development for future satellite missions such as the Sentinels and for validation of retrievals of land surface parameters with optical and thermal and microwave sensors onboard current and future satellite missions. This contribution describes the campaign objectives and provides an overview of the airborne and field campaign dataset. This dataset is available for scientific investigations and can be accessed on the ESA Principal Investigator Portal http://eopi.esa.int/.


Author(s):  
Manjunath B. E ◽  
D. G. Anand ◽  
Mahant. G. Kattimani

Airborne Light Detection and Ranging (LiDAR) provides accurate height information for objects on the earth, which makes LiDAR become more and more popular in terrain and land surveying. In particular, LiDAR data offer vital and significant features for land-cover classification which is an important task in many application domains. Aerial photos with LiDAR data were processed with genetic algorithms not only for feature extraction but also for orthographical image. DSM provided by LiDAR reduced the amount of GCPs needed for the regular processing, thus the reason both efficiency and accuracy are highly improved. LiDAR is an acronym for Light Detection and Ranging, which is typically defined as an integration of three technologies into a single system, which is capable of acquiring a data to produce accurate Digital Elevation Models.


Author(s):  
Michael Martin

Terrestrial LIDAR scanners are pushing the boundaries of accurate urban modelling. Automation and the usability of tools used in feature abstraction and, to a lesser degree, presentation have become the chief concerns with this new technology. To broaden the use and impact of LIDAR in the geomatics, LiDAR datasets must be converted to feature-based representations without loss of precision. One approach, taken here, is to simultaneously examine the overall path that data takes through an organization and the operatordriven tasks carried out on the data as it is transformed from a raw point cloud to final product. We present a review of the current practices in LiDAR data processing and a foundation for future efforts to optimize. We examine alternative LIDAR processing workflows with two key questions in mind: computational efficiency - whether the process can be done using the tools at all - and tool complexity - what operator skill level is needed at each step. Using these workflows the usability of the specific software tools and the required knowledge to effectively carry out the procedures using the tools are examined. Preliminary results have yielded workflows that successfully translate LIDAR to 3D object models, highly decimated point representations of street data represented in Google Earth, and large volume point data flythroughs in ESRI ArcScene. We are documenting the pragmatic limits on each of these workflows and tools for endusers. Terrestrial LIDAR brings with it new innovations for spatial visualizations, but also questions of viability. The technology has proved valuable for specialized applications for experts, but can it be useful as a tool for proliferating 3d spatial information by and to non-experts. This study illustrates the issues associated with preparing 3d LIDAR data for presentation in mainstream visualization environments.


Author(s):  
Claudio Mirarchi ◽  
Alberto Pavan ◽  
Beniamino Di Martino ◽  
Antonio Esposito

Building Information Modelling (BIM) is recognized as the central mean in the digitalization process of the construction sector affecting both the technological and the organizational levels. The use of information models can empower communication capabilities thus addressing one of the main development directions of industry 4.0. However, several issues can be highlighted in the representation of objects through information models especially in the case of existing and/or historical buildings. This chapter proposes an extensive analysis of the use of BIM for existing assets exploring the recent development in the area of machine learning and in the use of ontologies to overcome the existing issues. It will provide a structured presentation of existing works and of perspectives in the use of ontologies, expert systems, and machine learning application in architecture and cultural heritage focusing on communication and data use in digital environments along the industry 4.0 paradigm.


Sign in / Sign up

Export Citation Format

Share Document