Study of Compressive Strength of High Volume Fly Ash Concrete with Varying Proportion of Fly Ash and Silica Fume

2016 ◽  
Vol 3 (3) ◽  
pp. 3-6 ◽  
Author(s):  
Srila Dey ◽  
2007 ◽  
Vol 22 (4) ◽  
pp. 728-732 ◽  
Author(s):  
Xiaosheng Wei ◽  
Hongping Zhu ◽  
Guowei Li ◽  
Changqing Zhang ◽  
Lianzhen Xiao

Crystals ◽  
2020 ◽  
Vol 10 (4) ◽  
pp. 243 ◽  
Author(s):  
Mohamed H. Mussa ◽  
Ahmed M. Abdulhadi ◽  
Imad Shakir Abbood ◽  
Azrul A. Mutalib ◽  
Zaher Mundher Yaseen

The dynamic behaviour of high-volume fly ash concrete with nano-silica (HVFANS) and polypropylene fibres at curing ages of 7 to 90 days was determined by using a split Hopkinson pressure bar (SHPB) machine. At each curing age, the concrete samples were laboratory tested at different temperatures conditions under strain rates reached up to 101.42 s−1. At room temperature, the results indicated that the dynamic compressive strength of plain concrete (PC) was slightly higher than HVFANS concrete at early curing ages of 7 and 28 days, however, a considerable improvement in the strength of HVFANS concrete was noted at a curing age of 90 days and recorded greater values than PC owing to the increase of fly ash reactivity. At elevated temperatures, the HVFANS concrete revealed a superior behaviour than PC even at early ages in terms of dynamic compressive strength, critical strain, damage and toughness due to increase of nano-silica (NS) activity during the heating process. Furthermore, equations were suggested to estimate the dynamic increase factor (DIF) of both concretes under the investigated factors.


2011 ◽  
Vol 261-263 ◽  
pp. 333-337
Author(s):  
Juan Hong Liu ◽  
Fang Fang Hou ◽  
Shao Min Song ◽  
Bo Ya Jia

In this article, the effects of compressive strength and carbonation depth of HCSA mixing amount on high volume fly ash concrete have been investigated. Besides, the effects of compressive strength and carbonation depth of the fly ash amount on HCSA expansive concrete have been also analyzed. The results show that proper HCSA mixing amount can improve the compressive strength and anti-carbonation resistance. On the condition of 55% mixing amount of fly ash and 6% HCSA, the compressive strength for 28 days enhanced 8MPa, the carbonation depth decreased by 0.7mm, at the age of 70, the strength increased by 12MPa and the depth reduced 1.7mm; when the mixing amount of HCSA reaches 10%, the internal structure of concrete would be destroyed; In the case of 6% HCSA amount, the compressive strength and anti-carbonation resistance decreases with the increase of fly ash mixing amount. While comparing to the concrete without HCSA, the compressive strength and anti-carbonation resistance increase obviously.


2018 ◽  
Vol 207 ◽  
pp. 01004
Author(s):  
Mu Li

Fly ash is a by-product of the combustion of the coal-fired electric power stations, and disposal of fly ash has been one of the environmental challenges. Much of the studies have been focused on the mechanical property of fly ash concrete. It is no doubt that the use of high-volume fly ash as a partial replacement of cement is also one of the effect way to utilize fly ash. It is known that the compressive strength of fly ash concrete is lower than that of ordinary concrete at early age, especially for high-volume fly ash concrete. It is urgent for engineers to consider the compressive strength of high-volume fly ash concrete at different curing age. In this review, the compressive strength of high-volume fly ash concrete in various literature was reported and then analyzed. Furthermore, the proposal of the utilization of high-volume fly ash concrete is provided.


2017 ◽  
Vol 79 (7-2) ◽  
Author(s):  
Antoni Antoni ◽  
Alvin Krisnanta Widianto ◽  
Jerry Lakshmana Wiranegara ◽  
Djwantoro Hardjito

Fly ash is a by-product of coal burning and is widely used as a substitute for cement material. The advantages of using fly ash in concrete include the improvement of workability and reduction of bleeding and segregation. The problem often encountered when using fly ash is the uncertainty of the fly ash quality. The quality is influenced by the coal origin, burning technique, mineral content, and capturing method. In this study, the consistency of fly ash from one power plant source was investigated for making a high-volume fly ash (HVFA) mortar. Variations in fly ash can be detected by applying rapid indicators as suggested in this paper; i.e., the pH of the fly ash in aqueous solution, the percentage of fly ash particles passing sieve #325 and the superplasticizer demand for the targeted slump flow. The fly ash replacement ratio was varied from 10–60% of cement, by mass. The results showed a large variation in the chemical content of the fly ash as shown by variation in pH, whereas only slight variation in the physical properties of the fly ash, i.e. particle size and shape. Superplasticizer demand for the same flow diameter was reduced with the increase of fly ash content, whereas the optimum fly ash replacement ratio for maximum strength varied among fly ash from different sampling periods. The compressive strength could reach that of control specimens at a replacement ratio of 20–30%, and mortar compressive strength of 42 MPa was still achievable at a replacement ratio of 50%.


2021 ◽  
pp. 1-29
Author(s):  
Himabindu Myadaraboina ◽  
David Law ◽  
Indubhushan Patanikuni

The incorporation of high volume fly ash, up to 80%, in concrete without compromising the mechanical and durability properties is potentially very advantageous to the concrete industry in enabling the delivery of economic, social and environmental benefits. To assess this, two high volume fly ash mix designs incorporating 80% class F ultra-fine fly ash, known as microash and hydrated lime, with 10% silica fume and 0 % silica fume have been investigated. Properties investigated are compressive strength, carbonation, chloride ion penetration, water absorption and permeability. The specimens were cured for a maximum period of 90 days to optimize completion of the hydration reaction. The results show that the concrete manufactured with 80% microash exhibited compressive strength in excess of 40 MPa at 28 days and over 70 MPa at 90 days. The material also displayed excellent durability properties compared to the normal Portland cement concrete and other high volume fly ash concretes. The addition of silica fume improved the strength and durability properties of the material.


Sign in / Sign up

Export Citation Format

Share Document