scholarly journals Design And Analysis of Flat Plate Solar Air Dryer

2020 ◽  
Vol 7 (1) ◽  
pp. 37-40
Author(s):  
Arunprasad S ◽  
Saravanan P ◽  
Arulraj R

Solar dryers are equipment and using solar energy for drying substances, especially food. There are two common types of solar dryers: Direct & indirect. This is a dryer type in which the product to be dried directly absorbs the solar radiation. It is also referred to as a natural convection cabinet dryer, because the solar radiation falls directly on the surface; the product quality is reduced. Heated air from the drying chamber is blown through. A solar dryer's basic function is to heat air with solar energy to a constant temperature, which enables the moisture extraction from crops within a drying chamber. The main objective of flat plate solar air dryer model based on without tray & with tray chamber in Creo parametric software & computational fluid dynamics in Ansys software. Generally, solar air dryer is heat loss is possible, so it’s reduced with help of insulation material (glass wool & polyurethane). To predict the temperature difference in various air flow with insulation material. Furthermore, choose the better insulation material & difference between with & without tray chamber.

2014 ◽  
Vol 592-594 ◽  
pp. 2404-2408 ◽  
Author(s):  
Sunita Meena ◽  
Chandan Swaroop Meena ◽  
V.K. Bajpai

Solar energy collectors are a special kind of heat exchangers that transform solar radiation energy to internal energy of the transport medium. The major component of any solar system is the solar collector. This is a device which absorbs the incoming solar radiation, converts it into heat, and transfers this heat to a fluid (usually air, water, or oil) flowing through the collector. The measurement of the flat plate collector performance is the collector efficiency. The collector efficiency is the ratio of the useful energy gain to the incident solar energy over a particular period of time. The useful energy gain is strongly depends on the collector efficiency factor and this factor directly influenced by few parameters i.e. the centre to centre distance of absorber tubes W , thickness of absorber plate δ and heat loss coefficient UL. This paper has been focused on the relation between W with collector efficiency factor of serpentine tube solar flat-plate collector. This study shows that if we increase the W then Fˈ decreases.


2013 ◽  
Vol 368-370 ◽  
pp. 1228-1231
Author(s):  
Fen E Hu ◽  
Sheng Xian Wei ◽  
Neng Bang Hou

A solar radiation model to determine solar energy collection on solar collector array with different aspect ratios has been developed. The relations between the aspect ratio and the average daily solar radiation collection on the collector array have been deeply studied. The results show that there is an optimum aspect ratio to maximize the solar energy collection on the collector arrays. The optimum aspect ratios of the 1000 m2 collector array for Haikou, Kunming, Lhasa and Beijing are 10/1, 1/3, 5/1 and 10/1.The optimum aspect ratios of 1000 m2, 500 m2, 200 m2 and 100 m2 collector arrays for Kunming are 1/3, 3/1, 7/1 and 1/5, respectively.


1988 ◽  
Vol 110 (4) ◽  
pp. 346-348
Author(s):  
M. Segal ◽  
R. A. Pielke ◽  
Y. Ookouchi

Seasonal daily nonrandom cloudiness is typical in many geographical locations. Optimization of flat-plate solar collectors orientation in such situations requires azimuth and tilt modifications from those when daily cloudiness is random. The present study evaluates the significance of optimizing solar radiation gains, while considerating an illustrative case of nonrandom afternoon/morning cloudiness. Results suggest that for fixed flat-plate collectors the related gain in solar energy is practically insignificant. For nonfixed collectors the solar energy gains can be improved on a monthly basis by up to ∼6 percent.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Andrea de Almeida Brito ◽  
Heráclio Alves de Araújo ◽  
Gilney Figueira Zebende

AbstractDue to the importance of generating energy sustainably, with the Sun being a large solar power plant for the Earth, we study the cross-correlations between the main meteorological variables (global solar radiation, air temperature, and relative air humidity) from a global cross-correlation perspective to efficiently capture solar energy. This is done initially between pairs of these variables, with the Detrended Cross-Correlation Coefficient, ρDCCA, and subsequently with the recently developed Multiple Detrended Cross-Correlation Coefficient, $${\boldsymbol{DM}}{{\boldsymbol{C}}}_{{\bf{x}}}^{{\bf{2}}}$$DMCx2. We use the hourly data from three meteorological stations of the Brazilian Institute of Meteorology located in the state of Bahia (Brazil). Initially, with the original data, we set up a color map for each variable to show the time dynamics. After, ρDCCA was calculated, thus obtaining a positive value between the global solar radiation and air temperature, and a negative value between the global solar radiation and air relative humidity, for all time scales. Finally, for the first time, was applied $${\boldsymbol{DM}}{{\boldsymbol{C}}}_{{\bf{x}}}^{{\bf{2}}}$$DMCx2 to analyze cross-correlations between three meteorological variables at the same time. On taking the global radiation as the dependent variable, and assuming that $${\boldsymbol{DM}}{{\boldsymbol{C}}}_{{\bf{x}}}^{{\bf{2}}}={\bf{1}}$$DMCx2=1 (which varies from 0 to 1) is the ideal value for the capture of solar energy, our analysis finds some patterns (differences) involving these meteorological stations with a high intensity of annual solar radiation.


2019 ◽  
Vol 91 ◽  
pp. 05006
Author(s):  
Rami Qaoud ◽  
Alkama Djamal

The urban fabric of the desert cities is based on the principle of reducing the impact of urban canyons on direct solar radiation. Here comes this research, which is based on a comparative study of the periods of direct solarisation and values of the solar energy of urban canyons via two urban fabrics that have different building densities, where the ratio between L/W is different. In order to obtain the real values of the solar energy (thermal, lighting), the test field was examined every two hours, each three consecutive days. The measurement stations are positioned by the three types of the relationship between L/W, (L≥2w, L=w, L≤0.5w). According to the results, we noticed and recorded the difference in the periods of direct solarization between the types of urban engineering canyons, reaching 6 hours a day, the difference in thermal values of air, reaching 4 °C, and the difference in periods of direct natural lighting, reaching 6 hours. It should be noted that the role of the relationship between L/W is to protect the urban canyons by reducing the impact of direct solar radiation on urban canyons, providing longer hours of shading, and reducing solar energy levels (thermal, lighting) at the urban canyons. This research is classified under the research axis (the studies of external spaces in the urban environment according to the bioclimatic approach and geographic approach). But this research aims to focus on the tracking and studying the distribution of the solar radiation - thermal radiation and lighting radiation - in different types of street canyons by comparing the study of the direct solarization periods of each type and the quantity of solar energy collected during the solarization periods.


2021 ◽  
pp. 100028
Author(s):  
L. Syam Sundar ◽  
V. Punnaiah ◽  
Manoj K. Singh ◽  
António M.B. Pereira ◽  
António C.M. Sousa

Sign in / Sign up

Export Citation Format

Share Document