SEISMIC PERFORMANCE OF GFRP-RC RECTANGULAR COLUMNS: NUMERICAL STUDY

Author(s):  
Ehab El-Salakawy ◽  
Fangxin Ye ◽  
Yasser Mostafa Selmy

Composite materials like glass fiber-reinforced polymer (GFRP) is becoming widely acceptable to be used as a reinforcing material due to its high ultimate tensile strength-to-weight ratio and excellent resistance to corrosion. However, the seismic behavior of GFRP-reinforced concrete columns has not been fully investigated yet. This paper presents the results of a numerical analysis of full-size GFRP-RC rectangular columns under cyclic loading. The simulated column depicts the lower part of a building column between the foundation and the point of contra-flexure at the mid-height of the column. GFRP reinforcement properties and concrete modeling based on fracture energy have been incorporated in the numerical model. Experimental validation has been used to examine the accuracy of the constructed finite element models (FEMs) using a commercially available software. The validated FEM was used to perform a parametric study, considering several concrete strength values and axial load levels, to study its influence on the performance of the GFRP-reinforced concrete columns under cyclic loading. It was concluded that the hysteretic dissipation capacity deteriorates under high axial load level due to severe softening of the concrete. The FE results showed a substantial improvement of the lateral load-carrying capacities by increasing concrete compressive strength.

2018 ◽  
Vol 2018 ◽  
pp. 1-12 ◽  
Author(s):  
Chichaya Boonmee ◽  
Kittipoom Rodsin ◽  
Krissachai Sriboonma

This paper aims at investigating gravity load collapse behavior of extremely poor quality reinforced concrete columns under cyclic loading. Such columns were usually constructed by local people and may not be designed to meet any of the standards. It was found that their concrete strength may be as low as 5 MPa and the amount of longitudinal reinforcement may be lower than 1%. This type of column is deliberately defined as “nonengineered reinforced concrete column,” or NRCC. During earthquake, the gravity load collapse of the NRCC columns caused a large number of death tolls around the world. In this study, four columns as representative of existing NRCC were tested under cyclic loading. The compressive strength of concrete in order of 5 MPa was used to be representative of columns with poor quality concrete. Two axial load levels of 6 and 18 tons were used to study the influence of axial load level on maximum drift at gravity load collapse. To investigate the effect of bar types on drift capacity, 9 mm round bars were used in two specimens and 12 mm deformed bars were used for the rest of the specimens. The maximum drift before gravity load collapse was very dependent on the axial load level. The maximum drift of the specimens subjected to high axial load (18 tons) was extremely low at approximately 1.75% drifts. The use of deformed bars (associated with larger amount of longitudinal reinforcement) caused the damage to severely dissipate all over the height of the columns. Such damage caused columns to collapse at a lower drift compared to those using round bars. Finally, the plastic hinge model was used to predict the maximum drift of the low strength columns. It was found that the model overly underestimates the drift at gravity load collapse.


Materials ◽  
2020 ◽  
Vol 13 (7) ◽  
pp. 1594
Author(s):  
Umut Hasgul

In this study, the response quantities affecting the equivalent yield curvature, which is important in the deformation-based seismic design and assessment of structural systems, are investigated for reinforced concrete columns with a square cross-section. In this context, the equivalent yield curvatures were determined by conducting moment–curvature analyses on various column models, in which the axial load level, cross-section dimension, longitudinal reinforcement ratio, and concrete compression strength were changed parametrically, and the independent and/or combined effects of the relevant parameters were discussed. Depending on the axial load levels of P/Agfc′ < 0.3, P/Agfc′ = 0.3, and P/Agfc′ > 0.3 for the considered columns, the yielding of reinforcement, yielding of reinforcement and/or concrete crushing, and concrete crushing governed the yield conditions, respectively. It can be noted that the cross-section dimension and axial load level became the primary parameters. Even though the independent effects with regard to particular parameters remained at minimal levels, the combined effects of them with the axial load became important in terms of the equivalent yield curvature.


Author(s):  
Sinan Cansız

Reinforced concrete columns are the most important structural elements that determine the ductility of the structures. The main parameters affecting the behavior of reinforced concrete columns are axial load level, shear span, percent of longitudinal reinforcement and percent of transverse reinforcement. The aim of this study is to examine residual damage behavior of RC columns under cyclic loading similar to the earthquake loads combined depend on variable axial load level, spanning to depth ratio, longitudinal reinforcement ratio and transverse reinforcement ratio. When the results of experiments are examined, it can be seen that the residual drift ratio of reinforced concrete columns can be used to characterize the damage occurred in the structure after earthquake or loading. In addition, the performance level of the reinforced concrete columns according to the residual drift ratio is defined in FEMA356. As a result of this study, the analytical equation that calculates the residual drift ratio of the reinforced concrete columns at the ultimate displacement limit is proposed.


Author(s):  
Dimitra Achillopoulou ◽  
Athanasios Karabinis

Abstract The study deals with the investigation of the effect of casting deficiencies- both experimentally and analytically on axial yield load or reinforced concrete columns. It includes 6 specimens of square section (150x150x500 mm) of 24.37 MPa nominal concrete strength with 4 longitudinal steel bars of 8 mm (500 MPa nominal strength) with confinement ratio ωc=0.15. Through casting procedure the necessary provisions defined by International Standards were not applied strictly in order to create construction deficiencies. These deficiencies are quantified geometrically without the use of expensive and expertise non-destructive methods and their effect on the axial load capacity of the concrete columns is calibrated trough a novel and simplified prediction model extracted by an experimental and analytical investigation that included 6 specimens. It is concluded that: a) even with suitable repair, load reduction up to 22% is the outcome of the initial construction damage presence, b) the lower dispersion is noted for the section damage index proposed, c) extended damage alters the failure mode to brittle accompanied with longitudinal bars buckling, d) the proposed model presents more than satisfying results to the load capacity prediction of repaired columns.


2018 ◽  
Vol 183 ◽  
pp. 02008 ◽  
Author(s):  
Pavlo Krainskyi ◽  
Yaroslav Blikharskyy ◽  
Roman Khmil ◽  
Zinoviy Blikharskyy

The need of structural retrofitting and strengthening of different buildings, engineering structures or their elements is always present. Among the main reasons are demages and material deterioration due to aging, improper maintenance or physical damages; planed repairs; reconstruction or extension of the building; technical modification or complete change of operations inside the building or the structure, etc. In some cases operation of the building during retrofitting or strengthening of its structures has to be partially or fully stopped. In other cases the strengthening process takes place while the building is still operational which means that structures are strengthened under service loads. The main goal of this research is to determine the strengthening effect of reinforced concrete jacketing applied to columns under service load level. For that the experimental study of six reinforced concrete columns were carried out: four reference columns, both strengthened by jacketing and unstrengthened and two strengthened under service load. The main results of the research are presented.


Sign in / Sign up

Export Citation Format

Share Document