UNIVERSAL SIZE EFFECT STUDIES USING THREE POINT BEAM TESTS

Author(s):  
Siddik Şener ◽  
Kadir Can Şener

The universal size effect law for concrete is a law that describes the dependence of nominal strength of specimen or structure on both its size and the crack (or notch) length, over the entire of interest, and exhibits the correct small and large size asymptotic properties as required. The main difficulty has been the transition of crack length from 0, in which case the size effect mode is Type 1, to deep cracks (or notches), in which case the size effect mode is Type 2 and fundamentally different from Type 1. The current study is based on recently obtained comprehensive fracture test data from three-point bending beams tested under identical conditions. This paper presents a studying to improve the existing universal size effect law using the experimentally obtained beam strengths for various different specimen sizes and all notch depths. The updated universal size effect law is shown to fit the comprehensive data quite well.

2017 ◽  
Vol 3 (1) ◽  
pp. 47 ◽  
Author(s):  
Sıddık Şener ◽  
Kadir Can Şener

The universal size effect law of concrete is a law that describes the dependence of nominal strength of specimens or structure on both its size and the crack (or notch) length, over the entire of interest, and exhibits the correct small and large size asymptotic properties as required. The main difficulty has been the transition of crack length from 0, in which case the size effect mode is Type 1, to deep cracks (or notches), in which case the size effect mode is Type 2 and fundamentally different from Type 1. The current study is based on recently obtained comprehensive fracture test data from three-point bending beams tested under identical conditions. In this test, the experimental program consisted of 80 three-point bend beams with 4 different depths 40, 93, 215 and 500mm, corresponding to a size range of 1:12.5. Five different relative notch lengths, a/D = 0, 0.02, 0.075, 0.15, 0.30 were cut into the beams. A total of 20 different geometries (family of beams) were tested. The present paper will use these data to analyze the effects of size, crack length. This paper presents a studying to improve the existing universal size effect law, named by Bazant, using the experimentally obtained beam strengths for various different specimen sizes and all notch depths. The updated universal size effect law is shown to fit the comprehensive data quite well.


1995 ◽  
Vol 117 (4) ◽  
pp. 361-367 ◽  
Author(s):  
Zdeneˇk P. Bazˇant

The paper represents an extended text of a lecture presenting a review of recent results on scaling of failure in structures made of quasibrittle materials, characterized by a large fracture process zone, and examining the question of possible role of the fractal nature of crack surfaces in the scaling. The problem of scaling is approached through dimensional analysis, the laws of thermodynamics and asymptotic matching. Large-size and small-size asymptotic expansions of the size effect on the nominal strength of structures are given, for specimens with large notches (or traction-free cracks) as well as zero notches, and simple size effect formulas matching the required asymptotic properties are reported. The asymptotic analysis is carried out, in general, for fractal cracks, and the practically important case ofnonfractal crack propagation is acquired as a special case. Regarding the fractal nature of crack surfaces in quasibrittle materials, the conclusion is that it cannot play a signification role in fracture propagation and the observed size effect. The reason why Weibull statistical theory of random material strength does not explain the size effect in quasibrittle failures is explained. Finally, some recent applications to fracture simulation by particle models (discrete element method) and to the determination of size effect and fracture characteristics of carbon-epoxy composite laminates are briefly reviewed.


1995 ◽  
Vol 409 ◽  
Author(s):  
Zdeněk P. Bažant

AbstractThe paper presents a review of recent results on the problem of size effect (or the scaling problem) in nonlinear fracture mechanics of quasibrittle materials and on the validity or recent claims that the observed size effect may be caused by the fractal nature of crack surfaces. The problem of scaling is approached through dimensional analysis and asymptotic matching. Large-size and small-size asymptotic expansions of the size effect on the nominal strength of structures are presented, considering not only specimens with large notches (or traction-free cracks) but also structures with no notches. Simple size effect formulas matching the required asymptotic properties are given. Regarding the fractal nature of crack surfaces, it is concluded that it cannot be the cause of the observed size effect.


10.14311/612 ◽  
2004 ◽  
Vol 44 (5-6) ◽  
Author(s):  
H. Askes ◽  
A. Simone ◽  
L. J. Sluys

A nonlocal damage continuum and a viscoplastic damage continuum are used to model size effects. Three-point bending specimens are analysed, whereby a distinction is made between unnotched specimens, specimens with a constant notch and specimens with a proportionally scaled notch. Numerical finite element simulations have been performed for specimen sizes in a range of 1:64. Size effects are established in terms of nominal strength and compared to existing size effect models from the literature. 


2008 ◽  
Vol 38 (15) ◽  
pp. 18
Author(s):  
SHERRY BOSCHERT
Keyword(s):  

2010 ◽  
Vol 30 (S 01) ◽  
pp. S150-S152
Author(s):  
G. Jiménez-Cruz ◽  
M. Mendez ◽  
P. Chaverri ◽  
P. Alvarado ◽  
W. Schröder ◽  
...  

SummaryHaemophilia A (HA) is X-chromosome linked bleeding disorders caused by deficiency of the coagulation factor VIII (FVIII). It is caused by FVIII gene intron 22 inversion (Inv22) in approximately 45% and by intron 1 inversion (Inv1) in 5% of the patients. Both inversions occur as a result of intrachromosomal recombination between homologous regions, in intron 1 or 22 and their extragenic copy located telomeric to the FVIII gene. The aim of this study was to analyze the presence of these mutations in 25 HA Costa Rican families. Patients, methods: We studied 34 HA patients and 110 unrelated obligate members and possible carriers for the presence of Inv22or Inv1. Standard analyses of the factor VIII gene were used incl. Southern blot and long-range polymerase chain reaction for inversion analysis. Results: We found altered Inv22 restriction profiles in 21 patients and 37 carriers. It was found type 1 and type 2 of the inversion of Inv22. During the screening for Inv1 among the HA patient, who were Inv22 negative, we did not found this mutation. Discussion: Our data highlight the importance of the analysis of Inv22 for their association with development of inhibitors in the HA patients and we are continuous searching of Inv1 mutation. This knowledge represents a step for genetic counseling and prevention of the inhibitor development.


Sign in / Sign up

Export Citation Format

Share Document