FEATURES OF INSPECTION OF RING WELDED CONNECTIONS OF PIPE ELEMENTS BY CHARGING TYPE CONVERTERS

2021 ◽  
pp. 50-54
Author(s):  
V. M. Ushakov ◽  
V. V. Mikhalev ◽  
V. M. Sheinov

The article presents the results of an experimental study of the features of ultrasonic testing when adjusting the sensitivity with chord-type transducers. The unevenness of the control sensitivity in the direction perpendicular to the welded joint of the pipe element is shown. At a distance of 4…5 mm from the center of the weld, the reduction is 12…15 dB. In order to ensure reliable detection of discontinuities, it is proposed to scan perpendicular to the welded joint with the simultaneous movement of the chordal probe along the seam. The scanning parameters have been calculated. A corresponding instruction for ultrasonic testing of circular butt welded joints of pipe elements has been developed. The instruction describes the testing process with scanning of welded joints by chord type probes. Sensitivity adjustment is provided at a flat-bottomed reflector. A probe is placed on the border of the nearseam zone of the welded and moved perpendicular to the seam to the rear distance from the seam, shifted along the seam, taking into account the step to the seam to a position close to the seam, the probe is again shifted by a compression step, etc. Instruction is intended for ultrasonic testing of circular butt welded joints of 32´4 pipe elements; 42´4.5; 36´6; 60´6 and 108´6 mm.

2020 ◽  
Vol 44 (3) ◽  
pp. 22-36
Author(s):  

Практика показывает, что для сварных конструкций, эксплуатируемых в условиях Крайнего Севера необходимо уделять внимание работоспособности сварных соединений при низких температурах. Металл сварных соединений в процессе воздействия обработки изменяет свои свойства, снижается ударная вязкость, образуется гетерогенная структура с большой степенью разнозернистости. Чтобы оценивать и иметь возможность правильно контролировать термическое воздействие и последствия сварочного процесса, требуется решить задачу аналитического определения ударной вязкости для всех зон сварного соединения. В настоящей статье представлен инженерный метод оценки ударной вязкости, применимый для любой зоны сварного соединения, в которой имеется острый или особый концентратор напряжений – трещина. Разработанный аналитический метод расчета ударной вязкости отражает качественную и количественную картину взаимосвязи структурно-механических характеристик и работы развития трещины в диапазоне температур 77…300 К. Предложенная схематизация зависимости критического коэффициента интенсивности напряжений от температуры позволила найти коэффициенты, характеризующие свойства материала, и выполнить расчеты изменения предела текучести и предела прочности от температуры эксплуатации. Построены графики зависимости работы развития трещины от температуры эксплуатации для сталей 15ГС и 17ГС, сравнение которых с экспериментальными данными показывает удовлетворительное согласование. Найдено, что при напряжениях предела выносливости отношение работы развития трещины к критической длине трещины постоянно, не зависит от температуры и для сталей 15ГС и 17ГС равно около 10. Ключевые слова: ударная вязкость, работа разрушения, коэффициент интенсивности напряжений, трещина, феррито-перлитная сталь, зона термического влияния. For welded structures under operation in the Far North, attention must be paid to the performance of welded joints at low temperatures. The properties of metal of welded joints are changed in the process of treatment, its toughness decreases, and a heterogeneous structure with a large range of different grain sizes is formed. In order to evaluate and be able to correctly control the thermal effect and the consequences of the welding process, it is necessary to solve the problem of analytical determination of impact strength for all zones of the welded joint. The paper presents an engineering method for evaluation of the impact strength applicable to any area of the welded joint in which there is a sharp or super sharp stress concentrator – a crack. The developed analytical method for calculating the impact strength reflects a qualitative and quantitative codependency of structural and mechanical characteristics and the process of crack development in the temperature range of 77–300 K. The proposed schematization of dependence of the critical coefficient of stress intensity on the temperature made it possible to find coefficients characterizing the properties of the material and to perform calculations of changes in yield strength and tensile strength on operating temperature. Graphs of the crack development process dependency on the operating temperature for 15ГС and 17ГС steels were constructed, and their comparison with experimental data displays satisfactory agreement. It was found that at endurance limit stresses, the ratio of the crack development process to the critical crack length is constant, non-dependent on temperature, and is equal to 10 for 15ГС and 17ГС steels. Keywords: impact strength, fracture work, stress intensity factor, crack, ferrite-pearlite steel, heat affected zone, steel tempering.


Author(s):  
A. S. Atamashkin ◽  
E. Yu. Priymak ◽  
N. V. Firsova

The paper presents an analysis of the mechanical behavior of friction samples of welded joints from steels 30G2 (36 Mn 5) and 40 KhN (40Ni Cr 6), made by rotary friction welding (RFW). The influence of various temperature conditions of postweld tempering on the mechanical properties and deformation behavior during uniaxial tensile testing is analyzed. Vulnerabilities where crack nucleation and propagation occurred in specimens with a welded joint were identified. It was found that with this combination of steels, postweld tempering of the welded joint contributes to a decrease in the integral strength characteristics under conditions of static tension along with a significant decrease in the relative longitudinal deformation of the tested samples.


Materials ◽  
2021 ◽  
Vol 14 (11) ◽  
pp. 2742
Author(s):  
Furong Chen ◽  
Chenghao Liu

To improve the loose structure and serious porosity of (Al–Zn–Mg–Cu) 7075 aluminum alloy laser-welded joints, aging treatment, double-sided ultrasonic impact treatment (DSUIT), and a combination of aging and DSUIT (A–DSUIT) were used to treat joints. In this experiment, the mechanism of A–DSUIT on the microstructure and properties of welded joints was analyzed. The microstructure of the welded joints was observed using optical microscopy, scanning electron microscopy, and electron backscatter diffraction (EBSD). The hardness and tensile properties of the welded components under the different processes were examined via Vickers hardness test and a universal tensile testing machine. The results showed that, after the aging treatment, the dendritic structure of the welded joints transformed into an equiaxed crystal structure. Moreover, the residual tensile stress generated in the welding process was weakened, and the hardness and tensile strength were significantly improved. After DSUIT, a plastic deformation layer of a certain thickness was generated from the surface downward, and the residual compressive stress was introduced to a certain depth of the joint. However, the weld zone unaffected by DSUIT still exhibited residual tensile stress. The inner microhardness of the joint surface improved; the impact surface hardness was the largest and gradually decreased inward to the weld zone base metal hardness, with a small improvement in the tensile strength. Compared with the single treatment process, the microstructural and mechanical properties of the welded joint after A–DSUIT were comprehensively improved. The microhardness and tensile strength of the welded joint reached 200 HV and 615 MPa, respectively, for an increase of 45.8% and 61.8%, respectively. Observation of the fractures of the tensile specimens under the different treatment processes showed that the fractures before the aging treatment were mainly ductile fractures while those after were mainly brittle fractures. After DSUIT of the welded joints, a clear and dense plastic deformation layer was observed in the fracture of the tensile specimens and effectively improved the tensile properties of the welded joints. Under the EBSD characterization, the larger the residual compressive stress near the ultrasonic impact surface, the smaller the grain diameter and misorientation angle, and the lower the texture strength. Finally, after A–DSUIT, the hardness and tensile properties improved the most.


Materials ◽  
2021 ◽  
Vol 14 (10) ◽  
pp. 2671
Author(s):  
Xin-Yu Zhang ◽  
Xiao-Qin Zha ◽  
Ling-Qing Gao ◽  
Peng-Hui Hei ◽  
Yong-Feng Ren

In the present study, the microstructures and properties of DSS 2205 solid wire MIG welded samples prepared in different shielding gases (pure Ar gas, 98%Ar + 2%O2 and 98%Ar + 2%N2) were investigated for improving the weldability of DSS 2205 welded joint. The work was conducted by mechanical property tests (hardness and tensile test) and corrosion resistance property tests (immersion and electrochemical tests). The results show that adding 2%O2 into pure Ar gas as the shielding gas decreases crystal defects (faults) and improves the mechanical properties and corrosion resistance of the welded joints. Phase equilibrium and microstructural homogeneity in welded seam (WS) and heat-affected zone (HAZ) can be adjusted and the strength and corrosion resistance of welded joints increased obviously by adding 2%N2 to pure Ar gas as the shielding gas. Compared with DSS 2205 solid wire MIG welding in 98%Ar + 2%O2 mixed atmosphere, the strength and corrosion resistance of welded joints are improved more obviously in 98%Ar + 2%N2 mixed atmosphere.


2009 ◽  
Vol 83-86 ◽  
pp. 1251-1253 ◽  
Author(s):  
E.G. Grigoryev ◽  
V.N. Bazanov

The purpose of the work was to determine the capabilities of the pulse effect of electric current and pressure to produce welded joints of various component parts of different thickness from 18-10 stainless steel and titanium. Application of electric current pulses on the surfaces of contacting metallic conductors leads to considerable changes in the surface structure. Depending on the initial state of the surfaces and parameters of the pulse effect this can result in melting without formation of joints, formation of a strong welded joint with characteristics no worse than those of welded metals, and in destruction of the contact zone. A combination of a short electric pulse with simultaneous application of mechanical pressure in the weld zone causes high-speed deformation of the contact zone. The process of joint formation itself does not cause any appreciable diffusion during welding. The greatest energy emission and the maximal heating occur on the contacting surfaces being welded with the passage of an electric current pulse through the welding zone. Simultaneously with intensive heating, and due to applied pressure, high-speed deformation of materials takes place and a strong welded joint is formed. Optimal parameters for the welding of titanium and 18-10 stainless steel have been determined on the basis of the tests conducted. Investigations into the welding of titanium and 18-10 stainless steel have shown that application of a short electric current pulse and pressure produces stronger welded joints composed of both similar and different metals of considerably different thickness.


2017 ◽  
Vol 62 (1) ◽  
pp. 327-333 ◽  
Author(s):  
J. Pikuła ◽  
M. Łomozik ◽  
T. Pfeifer

Abstract Welded installations failures of power plants, which are often result from a high degree of wear, requires suitable repairs. In the case of cracks formed in the weld bead of waterwall, weld bead is removed and new welded joint is prepared. However, it is associated with consecutive thermal cycles, which affect properties of heat affected zone of welded joint. This study presents the influence of multiple manual metal arc welding associated with repair activities of long operated waterwall of boiler steel on properties of repair welded joints. The work contains the results of macro and microscopic metallographic examination as well as the results of hardness measurements.


2020 ◽  
pp. 46-52
Author(s):  
N.P. Aleshin ◽  
D.M. Kozlov ◽  
L.YU. Mogilner

The reliability of ultrasonic testing (UT) of the quality of welded joints of polyethylene pipelines, made end-to-end with a heated tool, is considered in comparison with mechanical tests and radiography. The greatest detection of solid defects is provided by ultrasonic inspection with the use of chord tipe probes (not less than 90 %). When detecting defects translucent for ultrasound (lack of penetration, lack of fusion, etc.), the reliability decreases to 70÷80 %. Keywords: welding, polyethylene pipeline, quality control, ultrasonic testing, chord tipe probe. [email protected]


Author(s):  
D.A. Neganov ◽  
◽  
A.E. Zorin ◽  
O.I. Kolesnikov ◽  
G.V. Nesterov ◽  
...  

The methodology of laboratory modeling of the loading of utor welded joint of the tank is presented. The methodology is based on testing of the special design sample. It allows under uniaxial tension on the typical servo-hydraulic machines to reproduce in the zone of a utor welded joint the combined action of bending and shear forces, similar to that which occurs during the operation of a vertical cylindrical tank. To assess the distribution of the stress-strain state in the proposed design of the sample under its loading, the finite element modeling was performed in the ANSYS software package. It showed the fundamental correspondence of the stress distribution in the zone of the utor node in the sample and in the real tank. The experimental studies consisted in carrying out tests for the durability of a series of 16 samples loaded with the maximum force in the cycle, causing the calculated stresses in the zone of the welded utor node in the range of 100–200 % from the maximum permissible ones. The obtained results showed that the maximum loaded zone, where the destruction of the samples occurred, is the near-seam zone of the utor welded joint on the inside of the tank. This corresponds to the statistics of the real tank failures. It is established that the developed methodology ensures the possibility of carrying out correct resource tests of the tank utor welded joints. It is also possible to vary the stress-strain state scheme within a wide range in the area of the utor welded joint by changing the design parameters of the test sample. In compliance with the regulated welding technologies and the absence of unacceptable defects in the welded joint, the utor node has a high resource, which significantly exceeding 50 years of the tank operation.


Sign in / Sign up

Export Citation Format

Share Document