CALCULATING THE BOUNDARIES OF THE AIRCRAFT EXIT ZONE TO A SET POINT

Author(s):  
O. N. Korsun ◽  
A. V. Stulovsky ◽  
S. V. Nikolaev

The article considers the method of calculating the boundaries of the exit zone of the aircraft to a given point based on the optimal control method. To find the optimal control, it is proposed to use a direct method based on parameterization of the desired control signals using third-order Hermitian splines. The choice of Hermitian cubic splines was motivated by the fact that these splines and their first order derivatives are smooth and continuous functions, on the one hand, and, on the other, do not require the additional solution of algebraic equations to meet the specific conditions in spline nodes which is obligatory for classic cubic splines. Spline parameters estimation is achieved through solution of the unconditional multiparametric optimization problem. The target functional includes the squares of mismatches between the desired output signals and the object model output signals. In this paper the parameter estimates are obtained using the widely known numerical optimization algorithm – the particle swarm method. The paper considers the aircraft motion in the vertical plane, for which a mathematical model of the control object is formed and the target functional is formulated. The proposed solution is advisable to apply when calculating the optimal trajectories and flight profiles of aircraft when planning their functioning for the designed purpose. The developed method allows solving a number of tasks in the process of modern aircraft design and flight tests. The application of the proposed method, the required structure of the mathematical model of the object and the features of the formation of the minimized functional are shown in a specific example.

Mathematics ◽  
2020 ◽  
Vol 9 (1) ◽  
pp. 21
Author(s):  
Askhat Diveev ◽  
Elizaveta Shmalko ◽  
Vladimir Serebrenny ◽  
Peter Zentay

This paper presents a new formulation of the optimal control problem with uncertainty, in which an additive bounded function is considered as uncertainty. The purpose of the control is to ensure the achievement of terminal conditions with the optimal value of the quality functional, while the uncertainty has a limited impact on the change in the value of the functional. The article introduces the concept of feasibility of the mathematical model of the object, which is associated with the contraction property of mappings if we consider the model of the object as a one-parameter mapping. It is shown that this property is sufficient for the development of stable practical systems. To find a solution to the stated problem, which would ensure the feasibility of the system, the synthesized optimal control method is proposed. This article formulates the theoretical foundations of the synthesized optimal control. The method consists in making the control object stable relative to some point in the state space and to control the object by changing the position of the equilibrium points. The article provides evidence that this approach is insensitive to the uncertainties of the mathematical model of the object. An example of the application of the method for optimal control of a group of robots is given. A comparison of the synthesized optimal control method with the direct method on the model without disturbances and with them is presented.


Author(s):  
Elizaveta Shmalko ◽  
Yuri Rumyantsev ◽  
Ruslan Baynazarov ◽  
Konstantin Yamshanov

To calculate the optimal control, a satisfactory mathematical model of the control object is required. Further, when implementing the calculated controls on a real object, the same model can be used in robot navigation to predict its position and correct sensor data, therefore, it is important that the model adequately reflects the dynamics of the object. Model derivation is often time-consuming and sometimes even impossible using traditional methods. In view of the increasing diversity and extremely complex nature of control objects, including the variety of modern robotic systems, the identification problem is becoming increasingly important, which allows you to build a mathematical model of the control object, having input and output data about the system. The identification of a nonlinear system is of particular interest, since most real systems have nonlinear dynamics. And if earlier the identification of the system model consisted in the selection of the optimal parameters for the selected structure, then the emergence of modern machine learning methods opens up broader prospects and allows you to automate the identification process itself. In this paper, a wheeled robot with a differential drive in the Gazebo simulation environment, which is currently the most popular software package for the development and simulation of robotic systems, is considered as a control object. The mathematical model of the robot is unknown in advance. The main problem is that the existing mathematical models do not correspond to the real dynamics of the robot in the simulator. The paper considers the solution to the problem of identifying a mathematical model of a control object using machine learning technique of the neural networks. A new mixed approach is proposed. It is based on the use of well-known simple models of the object and identification of unaccounted dynamic properties of the object using a neural network based on a training sample. To generate training data, a software package was written that automates the collection process using two ROS nodes. To train the neural network, the PyTorch framework was used and an open source software package was created. Further, the identified object model is used to calculate the optimal control. The results of the computational experiment demonstrate the adequacy and performance of the resulting model. The presented approach based on a combination of a well-known mathematical model and an additional identified neural network model allows using the advantages of the accumulated physical apparatus and increasing its efficiency and accuracy through the use of modern machine learning tools.


Author(s):  
A.I. Diveev ◽  
E.A. Sofronova

The paper focuses on the properties of symmetric control systems, whose distinctive feature is that the solution of the optimal control problem for an object, the mathematical model of which belongs to the class of symmetric control systems, leads to the solution of two problems. The first optimal control problem is the initial one; the result of its solution is a function that ensures the optimal movement of the object from the initial state to the terminal one. In the second problem, the terminal state is the initial state, and the initial state is the terminal state. The complexity of the problem being solved is due to the increase in dimension when the models of all objects of the group are included in the mathematical model of the object, as well as the emerging dynamic phase constraints. The presence of phase constraints in some cases leads to the target functional having several local extrema. A theorem is proved that under certain conditions the functional is not unimodal when controlling a group of objects belonging to the class of symmetric systems. A numerical example of solving the optimal control problem with phase constraints by the Adam gradient method and the evolutionary particle swarm method is given. In the example, a group of two symmetrical objects is used as a control object


1974 ◽  
Vol 14 (06) ◽  
pp. 593-608 ◽  
Author(s):  
W.H. Chen ◽  
G.R. Gavalas ◽  
J.H. Seinfeld ◽  
M.L. Wasserman

Abstract History-matching problems, in which reservoir parameters are to be estimated from well pressure parameters are to be estimated from well pressure data, are formulated as optimal control problems. The necessary conditions for optimality lead naturally to gradient optimization methods for determining the optimal parameter estimates. the key feature of the approach is that reservoir properties are considered as continuous functions properties are considered as continuous functions of position rather than as uniform in a certain number of zones. The optimal control approach is illustrated on a hypothetical reservoir and on an actual Saudi Arabian reservoir, both characterized by single-phase flow. A significant saving in computing time over conventional constant-zone gradient optimization methods is demonstrated. Introduction The process of determining in a mathematical reservoir model unknown parameter valuessuch as permeability and porositythat give the closest permeability and porositythat give the closest fit of measured and calculated pressures is commonly called "history matching." In principle, one would like an automatic routine for history matching, applicable to simulators of varying complexity, one that does not require inordinate amounts of computing time to achieve a set of parameter estimates. In recent years a number of authors have investigated the subject of history matching. All the reported approaches involve dividing the reservoir into a number of zones, in each of which the properties to be estimated are assumed to be uniform. (These zones may, in fact, correspond to the spatial grid employed for the finite-difference solution of the simulator.) Then the history-matching problem becomes that of determining the parameter problem becomes that of determining the parameter values in each of, say, N zones, k1, k2, ..., kN, in such a way that some measure (usually a sum of squares) of the deviation between calculated and observed pressures is minimized. A typical measure of deviation pressures is minimized. A typical measure of deviation is(1) where p obs (j, ti) and p cal (j, ti) are the observed and calculated pressures at the jth well, which is at location j=(xj, yj), j = 1,2,......, M, and where we have n1 measurements at Well 1 at n1 different times, n2 measurements at Well 2 at n2 different times, . . ., and nM measurements at Well M at nM different times. To carry out the minimization of Eq. 1 with respect to the vector k, most methods rely on some type of gradient optimization procedure that requires computation of the gradient of J with respect to each ki, i = 1, 2, . . ., N. The calculation of J/ ki usually requires, in turn, that one obtain the sensitivity coefficients, p cal/ ki, i = 1, 2, . . ., N; i.e., the first partial derivative of pressure with respect to each parameter. The sensitivity coefficients can be computed, in principle, in several ways. 1. Make a simulator base run with all N parameters at their initial values. Then, perturbing each parameter a small amount, make an additional simulator run for each parameter in the system. parameter in the system. SPEJ P. 593


2021 ◽  
Vol 145 ◽  
pp. 110789
Author(s):  
Parthasakha Das ◽  
Samhita Das ◽  
Pritha Das ◽  
Fathalla A. Rihan ◽  
Muhammet Uzuntarla ◽  
...  

Symmetry ◽  
2021 ◽  
Vol 13 (2) ◽  
pp. 336
Author(s):  
Askhat Diveev ◽  
Elizaveta Shmalko

This article presents a study devoted to the emerging method of synthesized optimal control. This is a new type of control based on changing the position of a stable equilibrium point. The object stabilization system forces the object to move towards the equilibrium point, and by changing its position over time, it is possible to bring the object to the desired terminal state with the optimal value of the quality criterion. The implementation of such control requires the construction of two control contours. The first contour ensures the stability of the control object relative to some point in the state space. Methods of symbolic regression are applied for numerical synthesis of a stabilization system. The second contour provides optimal control of the stable equilibrium point position. The present paper provides a study of various approaches to find the optimal location of equilibrium points. A new problem statement with the search of function for optimal location of the equilibrium points in the second stage of the synthesized optimal control approach is formulated. Symbolic regression methods of solving the stated problem are discussed. In the presented numerical example, a piece-wise linear function is applied to approximate the location of equilibrium points.


2020 ◽  
Vol 2020 (1) ◽  
Author(s):  
N. H. Sweilam ◽  
S. M. Al-Mekhlafi ◽  
A. O. Albalawi ◽  
D. Baleanu

Abstract In this paper, a novel coronavirus (2019-nCov) mathematical model with modified parameters is presented. This model consists of six nonlinear fractional order differential equations. Optimal control of the suggested model is the main objective of this work. Two control variables are presented in this model to minimize the population number of infected and asymptotically infected people. Necessary optimality conditions are derived. The Grünwald–Letnikov nonstandard weighted average finite difference method is constructed for simulating the proposed optimal control system. The stability of the proposed method is proved. In order to validate the theoretical results, numerical simulations and comparative studies are given.


2022 ◽  
pp. 107754632110593
Author(s):  
Mohammad Hossein Heydari ◽  
Mohsen Razzaghi ◽  
Zakieh Avazzadeh

In this study, the orthonormal piecewise Bernoulli functions are generated as a new kind of basis functions. An explicit matrix related to fractional integration of these functions is obtained. An efficient direct method is developed to solve a novel set of optimal control problems defined using a fractional integro-differential equation. The presented technique is based on the expressed basis functions and their fractional integral matrix together with the Gauss–Legendre integration method and the Lagrange multipliers algorithm. This approach converts the original problem into a mathematical programming one. Three examples are investigated numerically to verify the capability and reliability of the approach.


2018 ◽  
Vol 2018 ◽  
pp. 1-6 ◽  
Author(s):  
Linfen Cao ◽  
Xiaoshan Wang ◽  
Zhaohui Dai

In this paper, we study a nonlinear system involving the fractional p-Laplacian in a unit ball and establish the radial symmetry and monotonicity of its positive solutions. By using the direct method of moving planes, we prove the following result. For 0<s,t<1,p>0, if u and v satisfy the following nonlinear system -Δpsux=fvx;  -Δptvx=gux,  x∈B10;  ux,vx=0,  x∉B10. and f,g are nonnegative continuous functions satisfying the following: (i) f(r) and g(r) are increasing for r>0; (ii) f′(r)/rp-2, g′(r)/rp-2 are bounded near r=0. Then the positive solutions (u,v) must be radially symmetric and monotone decreasing about the origin.


1979 ◽  
Vol 20 (2) ◽  
pp. 301-312
Author(s):  
T.R. Jefferson ◽  
C.H. Scott

For convex optimal control problems without explicit pure state constraints, the structure of dual problems is now well known. However, when these constraints are present and active, the theory of duality is not highly developed. The major difficulty is that the dual variables are not absolutely continuous functions as a result of singularities when the state trajectory hits a state constraint. In this paper we recognize this difficulty by formulating the dual probram in the space of measurable functions. A strong duality theorem is derived. This pairs a primal, state constrained convex optimal control problem with a dual convex control problem that is unconstrained with respect to state constraints. In this sense, the dual problem is computationally more attractive than the primal.


Sign in / Sign up

Export Citation Format

Share Document