scholarly journals Geologic mapping in the Talkeetna Mountains and Eastern Alaska Range: A story of mineralization and deformation (presentation): Alaska Geological Society Luncheon, February 21, 2017

2017 ◽  
Author(s):  
Evan Twelker
2019 ◽  
Author(s):  
R.J. Gillis ◽  
P.G. Fitzgerald ◽  
K.D. Ridgway ◽  
B.M. Keough ◽  
J.A. Benowitz ◽  
...  

Author(s):  
Richard W. Saltus ◽  
Travis Hudson

In southern Alaska, Wrangellia-type magnetic crustal character extends from the Talkeetna Mountains southwest through the Alaska Range to the Bristol Bay region. Magnetic data analyses in the Talkeetna Mountains showed that there are mid-crustal differences in the magnetic properties of Wrangellia and the Peninsular terrane. After converting total field magnetic anomaly data to magnetic potential, we applied Fourier filtering techniques to remove magnetic responses from deep and shallow sources. The resulting mid-crustal magnetic characterization delineates the regional magnetic potential domains that correspond to the Wrangellia and Peninsular terranes throughout southern Alaska. These magnetic potential domains show that Wrangellia-type crust extends southwest to the Illiamna Lake region and that it overlaps the mapped Peninsular terrane. Upon reconsidering geologic ties between Wrangellia, Peninsular, and Alexander terranes we conclude that Peninsular terrane is part of what we here call Western Wrangellia. Western Wrangellia contains the Lower Jurassic Talkeetna volcanic arc and is similar to Wrangellia of the Vancouver Island area, Canada (Southern Wrangellia) which contains the Lower Jurassic Bonanza volcanic arc. Others have previously made this correlation and proposed that the Talkeetna arc-bearing part of southern Alaska was displaced from the Bonanza arc-bearing part of Canada. We generally agree and propose that about 1000 km of dextral displacement along ancestral Border Ranges fault segments and other faults of south-central Alaska separated Western Wrangellia from Southern Wrangellia. We think this displacement was mostly in the Late Jurassic and earliest Cretaceous, perhaps between about 160 and 130 Ma.


2013 ◽  
Vol 37 (1) ◽  
pp. 130-139 ◽  
Author(s):  
Melanie Stine

Rock glaciers are one of the most prominent geomorphic features in high-elevation areas and affect numerous hydrologic, ecologic, and geomorphic processes. However, little scientific attention was focused on rock glaciers during the first part of the 20th century. In 1959, Clyde Wahrhaftig and Allan Cox published a paper titled ‘Rock glaciers in the Alaska Range’, which initiated worldwide interest in these features and a subsequent surge of publications addressing rock glaciers. Wahrhaftig and Cox (1959) provided a detailed and encompassing study on rock glacier features, origins, classifications, relations to climate, movement, and composition. Their data and descriptions established a firm basis for further advancement of rock glacier research. This paper aims to assess the influence that Wahrhaftig and Cox (1959) had on subsequent publications and studies of rock glaciers.


Geosphere ◽  
2020 ◽  
Author(s):  
James V. Jones ◽  
Erin Todd ◽  
Stephen E. Box ◽  
Peter J. Haeussler ◽  
Christopher S. Holm-Denoma ◽  
...  

New U-Pb and 40Ar/39Ar ages integrated with geologic mapping and observations across the western Alaska Range constrain the distribution and tectonic setting of Cretaceous to Oligocene magmatism along an evolving accretionary plate margin in south-central Alaska. These rocks were emplaced across basement domains that include Neoproterozoic to Jurassic carbonate and siliciclastic strata of the Farewell terrane, Triassic and Jurassic plutonic and volcanic rocks of the Peninsular terrane, and Jurassic and Cretaceous siliciclastic strata of the Kahiltna assemblage. Plutonic rocks of different ages also host economic mineralization including intrusion-related Au, porphyry Cu-Mo-Au, polymetallic veins and skarns, and peralkaline intrusion-related rare-earth elements. The oldest intrusive suites were emplaced ca. 104–80 Ma into the Peninsular terrane only prior to final accretion. Deformation of the northern Kahiltna succession and underlying Farewell terrane occurred at ca. 97 Ma, and more widespread deformation ca. 80 Ma involved south-ver­gent folding and thrusting of the Kahiltna assemblage that records collisional accretion of the Peninsular-Wrangellia terrane and juxtaposition of sediment wedges formed on the inboard and outboard terranes. More widespread mag­matism ca. 75–55 Ma occurred in two general pulses, each having distinct styles of localized deformation. Circa 75–65 Ma plutons were emplaced in a transpressional setting and stitch the accreted Peninsular and Wrangellia terranes to the Farewell terrane. Circa 65–55 Ma magmatism occurred across the entire range and extends for more than 200 km inboard from the inferred position of the continental margin. The Paleocene plutonic suite generally reflects shallower emplacement depths relative to older suites and is associ­ated with more abundant andesitic to rhyolitic volcanic rocks. Deformation ca. 58–56 Ma was concentrated along two high-strain zones, the most prominent of which is 1 km wide, strikes east-northeast, and accommodated dextral oblique motion. Emplacement of widespread intermediate to mafic dikes ca. 59–51 Ma occurred before a notable magmatic lull from ca. 51–44 Ma reflect­ing a late Paleocene to early Eocene slab window. Magmatism resumed ca. 44 Ma, recording the transition from slab window to renewed subduction that formed the Aleutian-Meshik arc to the southwest. In the western Alaska Range, Eocene magmatism included emplacement of the elongate north-south Mer­rill Pass pluton and large volumes of ca. 44–37 Ma andesitic flows, tuffs, and lahar deposits. Finally, a latest Eocene to Oligocene magmatic pulse involved emplacement of a compositionally variable but spatially concentrated suite of magmas ranging from gabbro to peralkaline granite ca. 35–26 Ma, followed by waning magmatism that coincided with initiation of Yakutat shallow-slab subduction. Cretaceous to Oligocene magmatism throughout the western Alaska Range collectively records terrane accretion, translation, and integration together with evolving subduction dynamics that have shaped the southern Alaska margin since the middle Mesozoic.


Author(s):  
Grant Lowey

Waldien et al. (2021) present new bedrock geologic mapping, U-Pb geochronology, and 40Ar/39Ar thermochronology from the eastern Alaska Range in south-central Alaska to determine the burial and exhumation history of metamorphic rocks associated with the Alaska Range suture zone, interpret the history of faults responsible for the burial and exhumation of the metamorphic rocks, and speculate on the relative importance of the Alaska Range suture zone and related structures during Cenozoic reactivation. They also propose that ultramafic rocks in their Ann Creek map area in south-central Alaska (herein referred to as the “Ann Creek ultramafic complex”) correlate with the Pyroxenite Creek ultramafic complex in southwestern Yukon, and that this correlation is “consistent with other estimates of >400 km” of offset on the Denali fault. However, despite Waldien et al.’s (2021) claim that the purportedly offset ultramafic rocks are “similar” and that characteristics of the Ann Creek ultramafic complex “make a strong case” for a faulted portion of an Alaska-type ultramafic intrusion, their paper gives short shrift in describing the Pyroxenite Creek ultramafic complex and in discussing previous estimates of displacement on the Denali fault. In Addition, Waldien et al. (2021) are either unaware of or ignore several key references of the Pyroxenite Creek ultramafic complex and estimates of displacement on the Denali fault. As a result, Waldien et al.’s (2021) claim of a “correlation” between allegedly offset ultramafic rocks is suspect, and their reference to “other estimates of >400 km” of offset on the Denali fault is incorrect, or at the very least misleading.


1977 ◽  
Vol 7 (2) ◽  
pp. 149-176 ◽  
Author(s):  
Robert M. Thorson ◽  
Thomas D. Hamilton

The Dry Creek archeologic site contains a stratified record of late Pleistocene human occupation in central Alaska. Four archeologic components occur within a sequence of multiple loess and sand layers which together form a 2-m cap above weathered glacial outwash. The two oldest components appear to be of late Pleistocene age and occur with the bones of extinct game animals. Geologic mapping, stratigraphic correlations, radiocarbon dating, and sediment analyses indicate that the basal loess units formed part of a widespread blanket that was associated with an arctic steppe environment and with stream aggradation during waning phases of the last major glaciation of the Alaska Range. These basal loess beds contain artifacts for which radiocarbon dates and typologic correlations suggest a time range of perhaps 12,000–9000 yr ago. A long subsequent episode of cultural sterility was associated with waning loess deposition and development of a cryoturbated tundra soil above shallow permafrost. Sand deposition from local source areas predominated during the middle and late Holocene, and buried Subarctic Brown Soils indicate that a forest fringe developed on bluff-edge sand sheets along Dry Creek. The youngest archeologic component, which is associated with the deepest forest soil, indicates intermittent human occupation of the site between about 4700 and 3400 14C yr BP.


Sign in / Sign up

Export Citation Format

Share Document