scholarly journals MATHEMATICAL MODELING OF CRITICAL STATES OF THIN-WALLED CYLINDRICAL SHELLS UNDER INTERNAL PRESSURE AND AXIAL COMPRESSION

Author(s):  
V.L. Dilman ◽  
2021 ◽  
Vol 166 ◽  
pp. 108118
Author(s):  
Peng Jiao ◽  
Zhiping Chen ◽  
He Ma ◽  
Peng Ge ◽  
Yanan Gu ◽  
...  

Author(s):  
D Xing ◽  
W Chen ◽  
J Ma ◽  
L Zhao

In nature, bamboo develops an excellent structure to bear nature forces, and it is very helpful for designing thin-walled cylindrical shells with high load-bearing efficiency. In this article, the cross-section of bamboo is investigated, and the feature of the gradual distribution of vascular bundles in bamboo cross-section is outlined. Based on that, a structural bionic design for thin-walled cylindrical shells is presented, of which the manufacturability is also taken into consideration. The comparison between the bionic thin-walled cylindrical shell and a simple hollow one with the same weight showed that the load-bearing efficiency was improved by 44.7 per cent.


Author(s):  
Ali Limam ◽  
Ce´dric Mathon

This study deals with the buckling of thin cylindrical shells submitted to combined loads such internal pressure, bending and axial compression. A large experimental investigation is conducted and some explanations on the behavior of such loaded structures and on the influence of distinct parameters are gauged. The parametrical studies show the stabilising effect of low internal pressure and a drop of the load capacity for high internal pressure due to the plasticity effect. Specific recommendations are finally established for the design.


2021 ◽  
Author(s):  
Peng Jiao ◽  
Zhiping Chen ◽  
Ma He ◽  
Delin Zhang ◽  
Jihang Wu ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document