Buckling of thin-walled cylindrical shells under axial compression

2009 ◽  
Vol 79 (11) ◽  
pp. 1332-1353 ◽  
Author(s):  
Himayat Ullah
2021 ◽  
Vol 166 ◽  
pp. 108118
Author(s):  
Peng Jiao ◽  
Zhiping Chen ◽  
He Ma ◽  
Peng Ge ◽  
Yanan Gu ◽  
...  

Author(s):  
D Xing ◽  
W Chen ◽  
J Ma ◽  
L Zhao

In nature, bamboo develops an excellent structure to bear nature forces, and it is very helpful for designing thin-walled cylindrical shells with high load-bearing efficiency. In this article, the cross-section of bamboo is investigated, and the feature of the gradual distribution of vascular bundles in bamboo cross-section is outlined. Based on that, a structural bionic design for thin-walled cylindrical shells is presented, of which the manufacturability is also taken into consideration. The comparison between the bionic thin-walled cylindrical shell and a simple hollow one with the same weight showed that the load-bearing efficiency was improved by 44.7 per cent.


2021 ◽  
Author(s):  
Peng Jiao ◽  
Zhiping Chen ◽  
Ma He ◽  
Delin Zhang ◽  
Jihang Wu ◽  
...  

2021 ◽  
Vol 169 ◽  
pp. 108330
Author(s):  
Peng Jiao ◽  
Zhiping Chen ◽  
He Ma ◽  
Peng Ge ◽  
Yanan Gu ◽  
...  

Author(s):  
Peng Jiao ◽  
Zhiping Chen ◽  
He Ma ◽  
Delin Zhang ◽  
Jihang Wu ◽  
...  

Abstract Thin-walled cylindrical shell structure not only shows the highly efficient load carrying capacity but also is vulnerable to buckling instability failure. In practical application, these structures are more easily subjected to locally distributed axial compression load, which is a more common non-uniform loading case. However, until now, the buckling behaviors of thin-walled cylindrical shells under this kind of loading case are still unclear, and there are also few relevant buckling experiments. In order to fill this research gap as well as reveal the relevant failure mechanism of thin-walled cylindrical shell structures, in this paper buckling tests of thin-walled metallic cylindrical shell structures under non-uniform axial compression loads are successfully performed. In this regard, the design and characteristics of two cylindrical shell test specimens subjected to different pattern of non-uniform compression loads are mainly introduced. Meanwhile, as the important parts for conducting this buckling experiment, the axial compression buckling test rig as well as the real-time acquisition measurement system is also presented in details. Results indicate that locally distributed axial compression loads play a pivotal role in the buckling behaviors of thin-walled cylindrical shell, not matter from the point of view of load carrying capacity, shell deformation process or failure mode. The experiments carried out in this work can be served as a benchmark for related numerical simulation afterwards. Furthermore, the obtained test results can also provide some guides for the design and application of thin-walled cylindrical shell in actual engineering.


1979 ◽  
Vol 46 (2) ◽  
pp. 377-380 ◽  
Author(s):  
C. G. Foster

A great deal of the behavior of thin-walled cylindrical shells loaded in axial compression can be explained by considering the Yoshimura buckle pattern as a three-dimensional space frame and observing the collapse of that space frame.


1974 ◽  
Vol 96 (4) ◽  
pp. 1322-1327
Author(s):  
Shun Cheng ◽  
C. K. Chang

The buckling problem of circular cylindrical shells under axial compression, external pressure, and torsion is investigated using a displacement function φ. A governing differential equation for the stability of thin cylindrical shells under combined loading of axial compression, external pressure, and torsion is derived. A method for the solutions of this equation is also presented. The advantage in using the present equation over the customary three differential equations for displacements is that only one trial solution is needed in solving the buckling problems as shown in the paper. Four possible combinations of boundary conditions for a simply supported edge are treated. The case of a cylinder under axial compression is carried out in detail. For two types of simple supported boundary conditions, SS1 and SS2, the minimum critical axial buckling stress is found to be 43.5 percent of the well-known classical value Eh/R3(1−ν2) against the 50 percent of the classical value presently known.


Sign in / Sign up

Export Citation Format

Share Document