scholarly journals Effect of Gosha-jinki-gan, a Kampo medicine, on cortical blood flow of rat brain as observed by hemodilution technique and high-speed confocal microscopy

2007 ◽  
Vol 1 (1) ◽  
pp. 16-19
Author(s):  
Takashi Osada ◽  
Minoru Tomita ◽  
Yutaka Tomita ◽  
Miyuki Unekawa ◽  
Haruki Toriumi ◽  
...  
2011 ◽  
Author(s):  
Ireneusz Grulkowski ◽  
Grzegorz Wilczynski ◽  
Danuta Bukowska ◽  
Maciej Szkulmowski ◽  
Jakub Wlodarczyk ◽  
...  

Author(s):  
W.F. Marshall ◽  
K. Oegema ◽  
J. Nunnari ◽  
A.F. Straight ◽  
D.A. Agard ◽  
...  

The ability to image cells in three dimensions has brought about a revolution in biological microscopy, enabling many questions to be asked which would be inaccessible without this capability. There are currently two major methods of three dimensional microscopy: laser-scanning confocal microscopy and widefield-deconvolution microscopy. The method of widefield-deconvolution uses a cooled CCD to acquire images from a standard widefield microscope, and then computationally removes out of focus blur. Using such a scheme, it is easy to acquire time-lapse 3D images of living cells without killing them, and to do so for multiple wavelengths (using computer-controlled filter wheels). Thus, it is now not only feasible, but routine, to perform five dimensional microscopy (three spatial dimensions, plus time, plus wavelength).Widefield-deconvolution has several advantages over confocal microscopy. The two main advantages are high speed of acquisition (because there is no scanning, a single optical section is acquired at a time by using a cooled CCD camera) and the use of low excitation light levels Excitation intensity can be much lower than in a confocal microscope for three reasons: 1) longer exposures can be taken since the entire 512x512 image plane is acquired in parallel, so that dwell time is not an issue, 2) the higher quantum efficiently of a CCD detect over those typically used in confocal microscopy (although this is expected to change due to advances in confocal detector technology), and 3) because no pinhole is used to reject light, a much larger fraction of the emitted light is collected. Thus we can typically acquire images with thousands of photons per pixel using a mercury lamp, instead of a laser, for illumination. The use of low excitation light is critical for living samples, and also reduces bleaching. The high speed of widefield microscopy is also essential for time-lapse 3D microscopy, since one must acquire images quickly enough to resolve interesting events.


1968 ◽  
Vol 29 (4) ◽  
pp. 828-838 ◽  
Author(s):  
A. A. Hadji-Dimo ◽  
R. Ekberg ◽  
D. H. Ingvar

2020 ◽  
Vol 11 (1) ◽  
Author(s):  
Jiang Lan Fan ◽  
Jose A. Rivera ◽  
Wei Sun ◽  
John Peterson ◽  
Henry Haeberle ◽  
...  

AbstractUnderstanding the structure and function of vasculature in the brain requires us to monitor distributed hemodynamics at high spatial and temporal resolution in three-dimensional (3D) volumes in vivo. Currently, a volumetric vasculature imaging method with sub-capillary spatial resolution and blood flow-resolving speed is lacking. Here, using two-photon laser scanning microscopy (TPLSM) with an axially extended Bessel focus, we capture volumetric hemodynamics in the awake mouse brain at a spatiotemporal resolution sufficient for measuring capillary size and blood flow. With Bessel TPLSM, the fluorescence signal of a vessel becomes proportional to its size, which enables convenient intensity-based analysis of vessel dilation and constriction dynamics in large volumes. We observe entrainment of vasodilation and vasoconstriction with pupil diameter and measure 3D blood flow at 99 volumes/second. Demonstrating high-throughput monitoring of hemodynamics in the awake brain, we expect Bessel TPLSM to make broad impacts on neurovasculature research.


1991 ◽  
Vol 11 (4) ◽  
pp. 706-706

Ischemia of Rat Brain Decreases Pertussis Toxin-Catalyzed [32P] ADP Ribosylation of GTP-Binding Proteins (Gi1 and G0) in Membranes Katsunobu Takenaka, Yasunori Kanaho, Koh-ichi Nagata, Noboru Sakai, Hiromu Yamada, Yoshinori Nozawa [ Originally published in Journal of Cerebral Blood Flow and Metabolism 1991;11:155–160] On page 158 of the above, arrows were erroneously deleted from the equation in the following passage: Heterotrimers of G proteins that bind GDP to α subunits seem to be the preferred substrates for PTcatalyzed ADP ribosylation since guanine nucleotides (GDP and GTP) and 13'Y subunits stimulate ADP ribosylation in the reconstituted system and in membranes (Tsai et aI., 1984). These results indicate that the G proteins may exist at the equilibrium state as shown below: This omission was the result of a typesetting error, which the publisher regrets.


1996 ◽  
Vol 33 (3) ◽  
pp. 127-131 ◽  
Author(s):  
Zvi Zemishlany ◽  
Gene E. Alexander ◽  
Isak Prohovnik ◽  
Ron G. Goldman ◽  
Sukdeb Mukherjee ◽  
...  

2014 ◽  
Vol 7 (4) ◽  
pp. 545-550 ◽  
Author(s):  
Marcelo Bigliassi ◽  
Vinícius Barreto-Silva ◽  
Thiago Ferreira Dias Kanthack ◽  
Leandro Ricardo Altimari

Sign in / Sign up

Export Citation Format

Share Document