Evaluation of Gross Alpha and Beta Activity Concentrations and Annual Effective Dose in Drinking Waters of Misan Province-Iraq Using Low Background Gas Flow Proportional Counter (LB- 4110)

2021 ◽  
Vol 19 (11) ◽  
pp. 22-31
Author(s):  
Sawsan Sh. Fleifil ◽  
Zahraa A. Ismail AL-Sudani

In this study, assessment of levels natural radioactivity in drinking water samples of Misan Province of Iraq was carried out. A total of 33 (Tigris river, station and Tap) water samples collected from eleven places in Misan Province of Iraq. The beta and alpha gross radioactivity of the samples water was measured and an average annual effective dose derived of drinking-water ingestion was estimation utilizing new model a LB-4110 low background gas flow proportional counter. The data indicated that the Beta and Alpha gross activities and annual effective dose in samples did not exceed WHO recommended levels (0.5 Bq/L of Alpha gross, 1.0 Bq/L of Beta gross and 0.1 mSv/y for annual effective dose).

Author(s):  
Violeta Pintilie-Nicolov ◽  
Puiu Lucian Georgescu ◽  
Cătălina Iticescu ◽  
Dana Iulia Moraru ◽  
Adelina Georgiana Pintilie

Abstract In the present paper the different ways of assessing the annual effective dose due to ingestion of radionuclides by drinking water consumption were examined and exemplified. On a set of 10 samples the gross alpha activity, the gross beta activity, the concentration of 210Po, 210Pb, 238U, 232Th and, 226Ra were measured. The highest annual effective dose values assessed by relying on the investigated sample set were found by using the rationale according to which all the gross alpha and beta activity is due to the alpha and beta radionuclide, with the highest effective dose coefficient, namely 210Po and 210Pb/228Ra, respectively.


2019 ◽  
Vol 11 (20) ◽  
pp. 75-80
Author(s):  
Ali A. Al-Hamidawi

           In this research, radon concentrations in some types of healthy drinking water samples available in Iraq's market were measured using a technique called Durridge RAD-7-H2O with closed loop. Then the rate of annual effective dose in human taken this water is determined.           It was found that, radon concentrations in studied samples ranged between 1.2 Bq.m-3 to 142 Bq.m-3. The results of the radon concentrations and the rate of annual effective dose for drinking water samples were significantly lower than the USEPA and WHO recommended limits that equal 500 Bq/m3 and 1 mSv/y respectively.


Nukleonika ◽  
2015 ◽  
Vol 60 (3) ◽  
pp. 637-642 ◽  
Author(s):  
Gaye Özgür Çakal ◽  
Rufiyet Güven ◽  
Haluk Yücel

Abstract In this study, after the pulse shape calibration of a liquid scintillation counting (LSC) spectrometer (Quantulus 1220), the effi ciency was determined depending on sample quenching parameters. Then, gross alpha and beta activities in two spiked water samples obtained from International Atomic Energy Agency (IAEA) were used for the validation of the ASTM D7283-06 method, which is a standard test method for alpha and beta activity in water by LSC. Later, the drinking water samples (35 tap water and 9 bottled water) obtained from different districts of Ankara, Turkey, were measured. The maximum gross alpha activities are measured to be 0.08 Bq/L for tap waters and 0.13 Bq/L for bottled waters, whereas the maximum gross beta activities are found to be 0.18 Bq/L for tap waters and 0.16 Bq/L for bottled waters. These results indicate that these drinking water samples are below the required limits, which are 0.1 Bq/L for alpha emitting radionuclides and 1 Bq/L for beta emitting radionuclides. As a result, gross alpha and beta activities in drinking water of Ankara were determined accurately by this validated LSC method. It is also worth noting that LSC is a rapid and accurate method for the determination of gross alpha and beta activities without requiring a tedious sample preparation.


2018 ◽  
Vol 14 (3) ◽  
pp. 5696-5707
Author(s):  
Hesham A. Yousef

Water is the most important substance for life. Mineral waters are widely used as drinking water, and so that, it is important to determine the radon levels, and its risk in drinking water for public health and radiation protection. Radon concentration has been measured in the bottled natural mineral water samples commercially available in the Egyptian local market, using closed can technique. Radon concentration in water samples ranged from 0.93 - 6.89 Bql-1 and total annual effective dose ranged from 3.49 - 25.93 µSvy-1. The results indicate that radon concentrations in water samples lower than the recommended limit 11.1BqL-1 by EPA, and the annual effective dose of the samples are lower than the permissible international limit by EPA and WHO. The obtained results indicate that there is no significant public radiological risk related to radon ingested with drinking water in the present study.  


2016 ◽  
Vol 118 ◽  
pp. 201-210
Author(s):  
E. Cuesta ◽  
R.L. Lozano ◽  
E.G. San Miguel ◽  
M. Casas-Ruiz ◽  
J.P. Bolívar

2015 ◽  
Vol 30 (2) ◽  
pp. 139-144 ◽  
Author(s):  
Tabassum Nasir ◽  
M Matiullah ◽  
Muhammad Rafique ◽  
Rubeena Tahseen

Groundwater is considered to be the second largest contributor to the indoor radon concentration after soil. Therefore, measurement of waterborne radon has remained a point of interest for many researchers. The main objective of this study is to study waterborne radon activity in the city of Dera Ismail Khan. In this context, water samples were collected from different locations of the city and waterborne radon was measured using a pylon vacuum water degassing system and CR-39 based radon detectors. The pylon system measured waterborne radon activities in samples of hand pumps and motor driven pumps varying from 0.015 to 0.066 Bq/L and 0.021 to 0.145 Bq/L with average values of 0.041 ? 0.015 Bq/L and 0.076 ? 0.024 Bq/L, respectively. Whereas CR-39 based measured values ranged from 0.042 to 0.125 Bq/L and 0.075 to 0.158 Bq/L with average values of 0.081 ? 0.021 Bq/L and 0.120 ? 0.020 Bq/L, respectively. The estimated average annual effective dose due to ingestion of radon from drinking water using pylon and CR-39 based radon detectors for hand and motor pump samples was found to be 1.055?10-4 mSv and 1.947?10-4 mSv, and 2.067?10-4 mSv and 3.058?10-4 mSv, respectively. The waterborne radon concentrations and as a result the annual effective dose expected to be received from it are within the recommended safe limits.


Author(s):  
V.V. Lapenko ◽  
L.N. Bikbulatova ◽  
E.M. Ternikova

Water is very important for humans, as it is a solvent for metabolic products. Moreover, it is necessary for metabolism, biochemical and transport processes. The elemental status in persons depends on the geochemical environment and consumption of bioelements with food and water. The aim of the paper is to conduct a comprehensive assessment of chemical composition of drinking tap water in Khanty-Mansiysk and Salekhard. Materials and Methods. The chemical composition of 100 samples of drinking tap water was analyzed by atomic absorption spectrometry, spectrophotometry and capillary electrophoresis. All in all, there were 50 samples from Khanty-Mansiysk and 50 samples from Salekhard. The results were compared with Sanitary Rules and Norms 2.1.4.1074-01. Results. Drinking tap water in Salekhard contains a significantly higher concentration of iron, which is much above the maximum allowable concentration, if compared to water samples in Khanty-Mansiysk (p=0.03). In the cities under consideration, the water undergoes high-quality reagent-free treatment. However, the deterioration of the water supply networks in Salekhard is 3 times as high as in Khanty-Mansiysk. Calcium and magnesium concentration in water samples from Khanty-Mansiysk is 5.6 and 3.9 times lower than the MAC; in water samples from Salekhard calcium concentration is 6.3 (p=0.008) and magnesium concentration 4.6 (p<0.001) times lower than the MAC. Conclusion. The consumption of ultra-fresh drinking water leads to low intake of bioelements, which are a part of enzymes contributing to the human antioxidant defense and can result in manifestation of cardiovascular diseases. This is especially true for Salekhard with very soft drinking water and high iron concentration, which excess can exhibit prooxidant properties. Keywords: tap water, bioelements, northern region, antioxidants. Вода является важнейшим соединением для человека: необходима в качестве растворителя продуктов метаболизма и протекания обменных, биохимических и транспортных процессов. Элементный статус организма человека зависит от геохимического окружения и поступления биоэлементов с пищей и водой. Цель. Провести комплексную оценку химического состава водопроводной воды городов Ханты-Мансийск и Салехард. Материалы и методы. Методами атомно-абсорбционной спектрометрии, спектрофотометрии и капиллярного электрофореза проанализирован химический состав 100 проб водопроводной воды: по 50 из Ханты-Мансийска и Салехарда. Результаты сравнивали с СанПиН 2.1.4.1074-01. Результаты. В водопроводной воде Салехарда установлена превышающая ПДК и достоверно более высокая концентрация железа сравнительно с водой Ханты-Мансийска (р=0,03). При условии качественной безреагентной водоподготовки в изучаемых городах это обусловлено изношенностью водопроводных сетей в Салехарде, более чем в 3 раза превышающей этот показатель в Ханты-Мансийске. Концентрация кальция и магния в воде Ханты-Мансийска в 5,6 и 3,9 раза ниже ПДК; в воде Салехарда – в 6,3 (р=0,008) и 4,6 (р<0,001) раза ниже ПДК соответственно. Заключение. Употребление ультрапресной питьевой воды на фоне очень малого поступления с водой биоэлементов, входящих в состав ферментов антиоксидантной защиты организма человека, может привести к манифестации кардиоваскулярных заболеваний. Это особенно актуально для г. Салехарда с очень мягкой питьевой водой с повышенным содержанием железа, избыток которого может проявлять прооксидантные свойства. Ключевые слова: водопроводная вода, биоэлементы, северный регион, антиоксиданты.


Author(s):  
Eka Djatnika Nugraha ◽  
Masahiro Hosoda ◽  
June Mellawati ◽  
Untara Untara ◽  
Ilsa Rosianna ◽  
...  

The world community has long used natural hot springs for tourist and medicinal purposes. In Indonesia, the province of West Java, which is naturally surrounded by volcanoes, is the main destination for hot spring tourism. This paper is the first report on radon measurements in tourism natural hot spring water in Indonesia as part of radiation protection for public health. The purpose of this paper is to study the contribution of radon doses from natural hot spring water and thereby facilitate radiation protection for public health. A total of 18 water samples were measured with an electrostatic collection type radon monitor (RAD7, Durridge Co., USA). The concentration of radon in natural hot spring water samples in the West Java region, Indonesia ranges from 0.26 to 31 Bq L−1. An estimate of the annual effective dose in the natural hot spring water area ranges from 0.51 to 0.71 mSv with a mean of 0.60 mSv for workers. Meanwhile, the annual effective dose for the public ranges from 0.10 to 0.14 mSv with an average of 0.12 mSv. This value is within the range of the average committed effective dose from inhalation and terrestrial radiation for the general public, 1.7 mSv annually.


Author(s):  
Sigenori Miyamoto ◽  
Makoto Saito ◽  
Kazuhiro Kimura ◽  
Hiroshi Tsunemi ◽  
Shunjii Kitamoto

2014 ◽  
Vol 302 (3) ◽  
pp. 1167-1176 ◽  
Author(s):  
Mohammad Malakootian ◽  
Zahra Khashi ◽  
Farnaz Iranmanesh ◽  
Mojtaba Rahimi

Sign in / Sign up

Export Citation Format

Share Document