scholarly journals Determining the concentrations of radon and the rate of annual effective dose in some types of drinking water available in the Iraqi markets

2019 ◽  
Vol 11 (20) ◽  
pp. 75-80
Author(s):  
Ali A. Al-Hamidawi

           In this research, radon concentrations in some types of healthy drinking water samples available in Iraq's market were measured using a technique called Durridge RAD-7-H2O with closed loop. Then the rate of annual effective dose in human taken this water is determined.           It was found that, radon concentrations in studied samples ranged between 1.2 Bq.m-3 to 142 Bq.m-3. The results of the radon concentrations and the rate of annual effective dose for drinking water samples were significantly lower than the USEPA and WHO recommended limits that equal 500 Bq/m3 and 1 mSv/y respectively.

2021 ◽  
Vol 19 (11) ◽  
pp. 22-31
Author(s):  
Sawsan Sh. Fleifil ◽  
Zahraa A. Ismail AL-Sudani

In this study, assessment of levels natural radioactivity in drinking water samples of Misan Province of Iraq was carried out. A total of 33 (Tigris river, station and Tap) water samples collected from eleven places in Misan Province of Iraq. The beta and alpha gross radioactivity of the samples water was measured and an average annual effective dose derived of drinking-water ingestion was estimation utilizing new model a LB-4110 low background gas flow proportional counter. The data indicated that the Beta and Alpha gross activities and annual effective dose in samples did not exceed WHO recommended levels (0.5 Bq/L of Alpha gross, 1.0 Bq/L of Beta gross and 0.1 mSv/y for annual effective dose).


2018 ◽  
Vol 14 (3) ◽  
pp. 5696-5707
Author(s):  
Hesham A. Yousef

Water is the most important substance for life. Mineral waters are widely used as drinking water, and so that, it is important to determine the radon levels, and its risk in drinking water for public health and radiation protection. Radon concentration has been measured in the bottled natural mineral water samples commercially available in the Egyptian local market, using closed can technique. Radon concentration in water samples ranged from 0.93 - 6.89 Bql-1 and total annual effective dose ranged from 3.49 - 25.93 µSvy-1. The results indicate that radon concentrations in water samples lower than the recommended limit 11.1BqL-1 by EPA, and the annual effective dose of the samples are lower than the permissible international limit by EPA and WHO. The obtained results indicate that there is no significant public radiological risk related to radon ingested with drinking water in the present study.  


2015 ◽  
Vol 30 (2) ◽  
pp. 139-144 ◽  
Author(s):  
Tabassum Nasir ◽  
M Matiullah ◽  
Muhammad Rafique ◽  
Rubeena Tahseen

Groundwater is considered to be the second largest contributor to the indoor radon concentration after soil. Therefore, measurement of waterborne radon has remained a point of interest for many researchers. The main objective of this study is to study waterborne radon activity in the city of Dera Ismail Khan. In this context, water samples were collected from different locations of the city and waterborne radon was measured using a pylon vacuum water degassing system and CR-39 based radon detectors. The pylon system measured waterborne radon activities in samples of hand pumps and motor driven pumps varying from 0.015 to 0.066 Bq/L and 0.021 to 0.145 Bq/L with average values of 0.041 ? 0.015 Bq/L and 0.076 ? 0.024 Bq/L, respectively. Whereas CR-39 based measured values ranged from 0.042 to 0.125 Bq/L and 0.075 to 0.158 Bq/L with average values of 0.081 ? 0.021 Bq/L and 0.120 ? 0.020 Bq/L, respectively. The estimated average annual effective dose due to ingestion of radon from drinking water using pylon and CR-39 based radon detectors for hand and motor pump samples was found to be 1.055?10-4 mSv and 1.947?10-4 mSv, and 2.067?10-4 mSv and 3.058?10-4 mSv, respectively. The waterborne radon concentrations and as a result the annual effective dose expected to be received from it are within the recommended safe limits.


2018 ◽  
Vol 67 (11) ◽  
pp. 101-106
Author(s):  
Afrah Abdul Hussein Ibrahim ◽  
◽  
Ahmed Muhsen Hssan ◽  
Ali Abid Abojassim ◽  
◽  
...  

2013 ◽  
Vol 14 (4) ◽  
pp. 393-398

The occurrence of trihalomethanes (THMs) was studied in the drinking water samples from urban water supply network of Karachi city that served more than 18 million people. Drinking water samples were collected from 58 locations in summer (May-August) and winter (November-February) seasons. The major constituent of THMs detected was chloroform in winter (92.34%) and summer (93.07%), while the other THMs determined at lower concentrations. Summer and winter concentrations of total THMs at places exceed the levels regulated by UEPA (80 μg l-1) and WHO (100 μg l-1). GIS linked temporal variability in two seasons showed significantly higher median concentration (2.5%-23.06%) of THMs compared to winter.


Author(s):  
Eka Djatnika Nugraha ◽  
Masahiro Hosoda ◽  
June Mellawati ◽  
Untara Untara ◽  
Ilsa Rosianna ◽  
...  

The world community has long used natural hot springs for tourist and medicinal purposes. In Indonesia, the province of West Java, which is naturally surrounded by volcanoes, is the main destination for hot spring tourism. This paper is the first report on radon measurements in tourism natural hot spring water in Indonesia as part of radiation protection for public health. The purpose of this paper is to study the contribution of radon doses from natural hot spring water and thereby facilitate radiation protection for public health. A total of 18 water samples were measured with an electrostatic collection type radon monitor (RAD7, Durridge Co., USA). The concentration of radon in natural hot spring water samples in the West Java region, Indonesia ranges from 0.26 to 31 Bq L−1. An estimate of the annual effective dose in the natural hot spring water area ranges from 0.51 to 0.71 mSv with a mean of 0.60 mSv for workers. Meanwhile, the annual effective dose for the public ranges from 0.10 to 0.14 mSv with an average of 0.12 mSv. This value is within the range of the average committed effective dose from inhalation and terrestrial radiation for the general public, 1.7 mSv annually.


2015 ◽  
Vol 3 (1) ◽  
pp. e983384 ◽  
Author(s):  
Marize de Lm Solano ◽  
Cassiana C Montagner ◽  
Carolina Vaccari ◽  
Wilson F Jardim ◽  
Janete A Anselmo-Franci ◽  
...  

2014 ◽  
Vol 302 (3) ◽  
pp. 1167-1176 ◽  
Author(s):  
Mohammad Malakootian ◽  
Zahra Khashi ◽  
Farnaz Iranmanesh ◽  
Mojtaba Rahimi

Sign in / Sign up

Export Citation Format

Share Document