scholarly journals Performance investigation of a gasifier and gas engine system operated on municipal solid waste briquettes

2019 ◽  
Vol 8 (2) ◽  
pp. 179 ◽  
Author(s):  
Nigran Homdoung ◽  
Nattawud Dussadee ◽  
Kittikorn Sasujit ◽  
Tanongkiat Kiatsiriroat ◽  
Nakorn Tippayawong

Municipal solid waste (MSW) and charcoal can be used as a substitute fuel in a gas engine. In this work, performance of a downdraft gasifier and gas engine system operated on MSW briquette fuel was investigated. Experimental test was carried out on a 62 kW, four-cylinder, naturally aspirated engine coupled to a 20 kW dynamometer. The downdraft gasifier was used to generate producer gas from MSW briquettes and charcoal. The engine load was varied between 1.5-9.0 kW. Biomass consumption, producer gas production, cold gas efficiency, thermal efficiency of the gas engine, carbon monoxide (CO), hydrocarbon (HC) emissions and exhaust temperature were evaluated. The MSW briquette fuelled operation was compared against that with charcoal. It was found that, the use of MSW briquette led to lowering performance of the downdraft gasifier and gas engine system, in comparison with the use of charcoal. Maximum cold gas and thermal efficiencies obtained were 64.6% and 16% at 4.5 kW and 9 kW loading, respectively. The CO and HC emissions of the gas engine operated on MSW briquettes were higher than that on charcoal, while the exhaust temperatures were similar. ©2019. CBIORE-IJRED. All rights reserved

2016 ◽  
Vol 99 ◽  
pp. 1253-1261 ◽  
Author(s):  
V.S. Yaliwal ◽  
N.R. Banapurmath ◽  
R.S. Hosmath ◽  
S.V. Khandal ◽  
Wojciech M. Budzianowski

Author(s):  
Di Yang ◽  
Qiang Xie ◽  
Xinqian Shu ◽  
Yiman Jia ◽  
Jinwei Jia ◽  
...  

2000 ◽  
Vol 41 (3) ◽  
pp. 51-59 ◽  
Author(s):  
P. Battistoni ◽  
P. Pavan ◽  
J. Mata-Alvarez ◽  
M. Prisciandaro ◽  
F. Cecchi

In this paper experimental results on the anaerobic digestion of sewage sludge and organic fraction of municipal solid waste (OFMSW) by using a double phase process are reported. The long-term experiment has been carried out on a pilot scale plant, performed in different sets of operative conditions, during which granulometric distributions of particles in sludges and rheological properties of sludges were monitored. A significant fluidification of sludge was evidenced in the meso-thermo process, especially taking into account the variation in sludge behaviour from the first to the second phase. In the thermo-thermo process a fluidification higher than that shown in meso-thermo conditions is not observed, this suggesting that better results in terms of sludge conditioning can be obtained in a long time spent in thermophilic anaerobic digestion. Total volatile solids (TVS) and total fixed solids (TFS) become the most important parameters when mathematical modelling is applied to these processes.In the acidogenic phase, hydraulic retention time (HRT) and temperature are used to determine rigidity coefficient (RC), while only temperature is needed for yield stress (YC). Organic loading rate (OLR) and specific gas production (SGP) exert an important role in methanogenic phase description.


1996 ◽  
Vol 16 (1-4) ◽  
pp. 265-279 ◽  
Author(s):  
Don Augenstein ◽  
Donald L. Wise ◽  
Nghiem Xuan Dat ◽  
Nguyen Duc Khien

Fuel ◽  
2020 ◽  
Vol 263 ◽  
pp. 116509 ◽  
Author(s):  
Arif Rahman Saleh ◽  
Bambang Sudarmanta ◽  
Hamzah Fansuri ◽  
Oki Muraza

2019 ◽  
Vol 25 (4) ◽  
pp. 329-339
Author(s):  
João Cardoso ◽  
Valter Silva ◽  
Daniela Eusébio ◽  
Tiago Carvalho ◽  
Paulo Brito

A 2-D numerical simulation approach was implemented to describe the gasification process of olive pomace in a bubbling fluidized bed reactor. The numerical model was validated under experimental gasification runs performed in a 250 kWth quasi-industrial biomass gasifier. The producer gas composition, H2/CO ratio, CH4/H2 ratio, cold gas efficiency and tar content were evaluated. The most suitable applications for the potential use of olive pomace as an energy source in Portugal were assessed based on the results. A techno-economic study and a Monte Carlo sensitivity analysis were performed to assess the feasibility and foresee the main investment risks in conducting olive pomace gasification in small facilities. Results indicated that olive pomace gasification is more suitable for domestic purposes. The low cold gas efficiency of the process (around 20%) turns the process more appropriate for producer gas production in small cogeneration facilities. Olive pomace gasification solutions showed viable economic performance in small cogeneration solutions for agriculture waste-to-energy recovery in olive oil agriculture cooperatives. However, the slender profitability may turn the project unattractive for most investors from a financial standpoint.


Sign in / Sign up

Export Citation Format

Share Document