scholarly journals The Effect of Solid-State Anaerobic Disgestion (Ss-Ad) and Liquid Anaerobic Disgestion (L-Ad) Method in Biogas Production of Rice Husk

2019 ◽  
Vol 1 (1) ◽  
pp. 5-17
Author(s):  
Budiyono Budiyono ◽  
Siswo Sumardiono ◽  
Fadillah Fathir Mahmud Fofana ◽  
Ihwan Fauzi ◽  
Agus Hadiyarto

Rice husk is one of the agricultural waste from rice crop residue which has high potential to be processed into biogas. The purpose of this research is to study the effect of solid state anaerobic digestion and liquid anaerobic digestion on biogas production from rice husk waste. The anaerobic digestion laboratory scale used in this experiment is operated in a batch system and at room temperature. This method is added with chemical and biological pretreatment that was NaOH and microbial consortium. Total solid (TS) was varied from 5%, 7%, 9%, 11% which is L-AD and 17%, 19%, 21%, 23% are SS-AD. Biogas results were measured using the water displacement method every two days to determine daily production. The results showed that with the addition of NaOH the total volume of biogas obtained by L-AD method (TS 9%) and SS-AD (TS 23%) were 1254 ml and 1397 ml. Production of biogas per unit of TS for L-AD method is 46,44 ml / grTS and for SS-AD is 20,246 ml / grts, while biogas production per reactor volume unit for L-AD method is 6,26 ml / ml reactor and for SS-AD method is 4.64 ml / ml reactor. The kinetics constant of biogas production with L-AD method obtained A, U, and λ respectively were 50,53 ml / grTS, 1.23ml / grTS.day, 11,71 day, while for SS-AD method obtained A, U , and λ respectively 21.07 ml / grTS, 0.6 ml / grTS.day, 6.2 days.

2018 ◽  
Vol 73 ◽  
pp. 01018
Author(s):  
HashfiHawali Abdul Matin ◽  
Hadiyanto

Rice husk is one of agricultural waste which have a potential to be processed into biogas. The aim of this research was to study the effect of enzymatic pretreatment and C/N ratio to biogas production from rice husk by solid state anaerobic digestion (SS-AD). This research were operated in batch system and at room temperature. TS was set 21%. Enzymatic pretreatment was conducted using lignase enzyme. C/N ratio was varied from 35, 40, 45, and 50. The variation of C/N ratio is made by adding technical urea to the substrate. Biogas formed was measured by using water displacement method every two days. The result showed that enzymatic pretreatment could increase biogas production varied from 30 to 55 %. The highest biogas production was obtained at C/N ratio 35. Specific biogas production on C/N ratio of 35, 40, 45, and 50 were 11.6, 10.2, 9.8 and 9.4 ml/grTS, respectively. SS-AD has volumetric loading of biogas production higher than generally in liquid anaerobic digestion (L-AD). Combined with our previous research with variations of C/N ratio 20, 25, 30, and 35, we obtained an optimum C/N ratio at 35.


2017 ◽  
Vol 23 (3) ◽  
pp. 2204-2206 ◽  
Author(s):  
. Syafrudin ◽  
Winardi Dwi Nugraha ◽  
Indra Hukama Ardinata ◽  
Larasati Gumilang Kencanawardhani ◽  
Hashfi Hawali Abdul Matin ◽  
...  

2018 ◽  
Vol 31 ◽  
pp. 01006 ◽  
Author(s):  
Winardi Dwi Nugraha ◽  
Syafrudin ◽  
Cut Fadhila Keumala ◽  
Hashfi Hawali Abdul Matin ◽  
Budiyono

Pretreatment during biogas production aims to assist in degradation of lignin contained in the rice husk. In this study, pretreatment which is used are acid and biological pretreatment. Acid pretreatment was performed using acetic acid and nitric acid with a variety levels of 3% and 5%. While biological pretreatment as a control variable. Acid pretreatment was conducted by soaking the rice straw for 24 hours with acid variation. The study was conducted using Solid State Anaerobic Digestion (SS-AD) with 21% TS. Biogas production was measured using water displacement method every two days for 60 days at room temperature conditions. The results showed that acid pretreatment gave an effect on the production of biogas yield. The yield of the biogas produced by pretreatment of acetic acid of 5% and 3% was 43.28 and 45.86 ml/gr.TS. While the results without pretreatment biogas yield was 29.51 ml/gr.TS. The results yield biogas produced by pretreatment using nitric acid of 5% and 3% was 12.14 ml/gr.TS and 21.85 ml/gr.TS. Results biogas yield with acetic acid pretreatment was better than the biogas yield results with nitric acid pretreatment.


2018 ◽  
Vol 24 (12) ◽  
pp. 9875-9876
Author(s):  
Winardi Dwi Nugraha ◽  
Syafrudin ◽  
Windy Surya Permana ◽  
Hashfi Hawali Abdul Matin ◽  
Budiyono

2018 ◽  
Vol 156 ◽  
pp. 03043 ◽  
Author(s):  
Bakti Jos ◽  
Hanif Farhan ◽  
Nadia Dwi Ayu ◽  
Budiyono ◽  
Siswo Sumardiono

The crucial problem facing the world today is energy resources. Waste production of palm oil fruit bunch potentially produce as renewable energy resource. Palm oil fruit bunch contains 44% cellulose, 18% lignin and 34% hemicellulose. Organic carbon source is contained in biomass potentially produce biogas. Biogas is one of alternative energy, which is environmentally friendly and has been widely developed. This research is aimed to examine the effect of pretreatment in raw material of waste palm oil fruit bunch for the production of biogas, the effect of time, ratio C/N, and effect of microbial consortium. The variables are total solid (TS) used 10% and 18% with a 40 mesh physical pretreatment, chemical pretreatment with NaOH 8% gr / gr TS, and biology 5% g/vol with microbial consortium. Biogas production process was conducted over 2 months in room temperature, the test response quantitative results in the form of biogas volume every 2 days and also flame test. The result of this research shows that the highest daily production rate of biogas obtained from this study was 5,73 ml/gr TS and the highest biogas production accumulation generated at 58,28 ml/gr TS produced through a 40 mesh sieve of waste oil palm empty fruit bunch, immersion in NaOH, through solid state fermentation and C/N 30. From this research, it can be concluded that the optimum production of biogas formation occurs with the value of C/N 30, physical and biological pretreatment, and solid state method.


2018 ◽  
Vol 31 ◽  
pp. 02007 ◽  
Author(s):  
Hashfi Hawali Abdul Matin ◽  
Hadiyanto

An effort to obtain alternative energy is still interesting subject to be studied, especially production of biogas from agriculture waste. This paper was an overview of the latest development of biogas researches from rice husk waste by Solid State Anaerobic Digestion (SSAD). The main obstacle of biogas production from rice husk waste was the lignin content which is very difficult degraded by microbes. Various pretreatments have been conducted, either physically, chemically as well as biologically. The SSAD method was an attractive option because of the low water content of rice husk waste. The biogas yield by SSAD method gave more attractive result compared to Liquid Anaerobic Digestion (LAD) method. Various studies were still conducted in batch mode laboratory scale and also has not found optimum operating conditions. Research on a larger scale such as bench and pilot scale with continuous systems will be an increase trend in the future research.


2019 ◽  
Vol 35 (5) ◽  
pp. 503-512 ◽  
Author(s):  
Jianjun Zang ◽  
Jason C. H. Shih ◽  
Jay J. Cheng ◽  
Zhimin Liu ◽  
Ying Liu ◽  
...  

AbstractTwo solid state anaerobic digesters (SSADs), 15 L each, were set up for co-digestion of switchgrass with primary digestate of a liquid anaerobic digester (LAD) and the recirculating leachate. Both the LAD and two SSADs were operated at 50°C. The results showed that the bioreactors were not started up stably until day 16 and day 47 for reactors A and B, respectively. The supplement of LAD digestate or injection of sodium hydroxide (NaOH) into the recirculating leachate readily reinitiated the biogas production to normal daily high rates of the two individual SSADs, one on day 16 and the other on day 47. In contrast to reactor A, there was a longer lag phase for bioreactor B, however, it showed 46.2% [77.9 vs 53.3 L kg−1 volatile solid (VS)] more cumulative biogas yields, and higher reduction rate of total solid, VS, cellulose and hemicellulose of 29.5, 31, 40.6 and 15%, respectively, which was likely due to optimized pH and NaOH pretreated switchgrass during start-up period. Methane contents of biogas increased gradually and stabilized at 50% for both reactors, indicating a normal operation of anaerobic digestion lasted for at least 100 days. The determined parameters of digested residues met China organic fertilizer standard (NY 525-2012) except for high moisture and low total nutrient contents. Therefore, the product of SSAD has the potential value of organic fertilizer. It is concluded that the LAD digestate can be reused as inoculums by co-digestion with agricultural residues for biogas and organic fertilizer production in SSAD.


2020 ◽  
Vol 202 ◽  
pp. 08004
Author(s):  
Syafrudin ◽  
Winardi Dwi Nugraha ◽  
Aisyah Bahrani ◽  
Hashfi Hawali Abdul Matin ◽  
Budiyono

Biogas technology solves the problem of energy crisis. Biogas is a renewable and environment friendly fuel (Franthena, 2015). This study aims to determine the optimum value of grinding size variations in biogas production with the solid state anaerobic digestion (SS-AD) method of biogas production from rice husk waste. We divide the method used into four stages, namely, the testing phase of total rice content, solids, preparation phase, operation phase, and results analysis. The rice husk waste used for this study came from the Rowosari area. We accept rice for preliminary treatment with chemical pretreatment (NaOH). We soaked rice husk with a concentration of 6% NaOH for 24 hours as a control variable. Milling variations used as physical pretreatment are 10 mesh, 18 mesh, 35 mesh, 60 mesh. We used bioreactors with a volume of 200 ml. We observed all biogas reactors produced every two days for ± 60 days of research. The results showed that the reactors with 10 mesh, 18 mesh, 35 mesh, 60 mesh milling variations obtained a total biogas yield of 11.688484; 9,479955; 12.50772; 19,03718 ml / grTS until the 60th day. The control reactor (without grinding variations) produced 9,084606 ml / grTS. The highest biogas production level is 60 mesh with a value, (A) 19.03718 (ml / grTS); the rate of biogas production (U) 0.2416979 (ml / gr TS.day); and the minimum time for biogas formation (λ) is 3.83908 days.


2017 ◽  
Vol 23 (6) ◽  
pp. 5687-5690 ◽  
Author(s):  
Syafrudin ◽  
Winardi Dwi Nugraha ◽  
Hashfi Hawali Abdul Matin ◽  
Larasati Gumilang Kencanawardhani ◽  
Budiyono

Sign in / Sign up

Export Citation Format

Share Document