scholarly journals Biogas Production from Palm Oil Fruit Bunch in Anaerobic Biodigester through Liquid State (LS-AD) and Solid State (SS-AD) Method

2018 ◽  
Vol 156 ◽  
pp. 03043 ◽  
Author(s):  
Bakti Jos ◽  
Hanif Farhan ◽  
Nadia Dwi Ayu ◽  
Budiyono ◽  
Siswo Sumardiono

The crucial problem facing the world today is energy resources. Waste production of palm oil fruit bunch potentially produce as renewable energy resource. Palm oil fruit bunch contains 44% cellulose, 18% lignin and 34% hemicellulose. Organic carbon source is contained in biomass potentially produce biogas. Biogas is one of alternative energy, which is environmentally friendly and has been widely developed. This research is aimed to examine the effect of pretreatment in raw material of waste palm oil fruit bunch for the production of biogas, the effect of time, ratio C/N, and effect of microbial consortium. The variables are total solid (TS) used 10% and 18% with a 40 mesh physical pretreatment, chemical pretreatment with NaOH 8% gr / gr TS, and biology 5% g/vol with microbial consortium. Biogas production process was conducted over 2 months in room temperature, the test response quantitative results in the form of biogas volume every 2 days and also flame test. The result of this research shows that the highest daily production rate of biogas obtained from this study was 5,73 ml/gr TS and the highest biogas production accumulation generated at 58,28 ml/gr TS produced through a 40 mesh sieve of waste oil palm empty fruit bunch, immersion in NaOH, through solid state fermentation and C/N 30. From this research, it can be concluded that the optimum production of biogas formation occurs with the value of C/N 30, physical and biological pretreatment, and solid state method.

Energies ◽  
2019 ◽  
Vol 12 (22) ◽  
pp. 4368
Author(s):  
Muthita Tepsour ◽  
Nikannapas Usmanbaha ◽  
Thiwa Rattanaya ◽  
Rattana Jariyaboon ◽  
Sompong O-Thong ◽  
...  

Oil palm empty fruit bunches (EFB) and palm oil decanter cake (DC) were used to investigate biogas production by using solid-state anaerobic co-digestion (SS-AcoD) with 15% total solid (TS) content. Solid state anaerobic digestion (SS-AD) using substrate to inoculum (S:I) ratio of 3:1, methane yields of 353.0 mL-CH4/g-VS and 101.5 mL-CH4/g-VS were respectively achieved from mono-digestion of EFB without oil palm ash (OPA) addition and of DC with 10% OPA addition under mesophilic conditions 35 °C. By adding 5% OPA to SS-AD using 3:1 S:I ratio under thermophilic conditions (55 °C), mono-digestion of EFB and DC provided methane yields of 365.0 and 160.3 mL-CH4/g-VS, respectively. Furthermore, SS-AcoD of EFB:DC at 1:1 mixing ratio (volatile solid, VS basis), corresponding to carbon to nitrogen (C:N) ratio of 32, gathering with S:I ratio of 3:1 and 5% ash addition, synergistic effect is observed together with similar methane yields of 414.4 and 399.3 mL-CH4/g-VS, achieved under 35 °C and 55 °C, respectively. According to first order kinetic analysis under synergistic condition, methane production rate from thermophilic operation is 5 times higher than that from mesophilic operation. Therefore, SS-AcoD could be potentially beneficial to generate biogas from EFB and DC.


2019 ◽  
Vol 1 (1) ◽  
pp. 5-17
Author(s):  
Budiyono Budiyono ◽  
Siswo Sumardiono ◽  
Fadillah Fathir Mahmud Fofana ◽  
Ihwan Fauzi ◽  
Agus Hadiyarto

Rice husk is one of the agricultural waste from rice crop residue which has high potential to be processed into biogas. The purpose of this research is to study the effect of solid state anaerobic digestion and liquid anaerobic digestion on biogas production from rice husk waste. The anaerobic digestion laboratory scale used in this experiment is operated in a batch system and at room temperature. This method is added with chemical and biological pretreatment that was NaOH and microbial consortium. Total solid (TS) was varied from 5%, 7%, 9%, 11% which is L-AD and 17%, 19%, 21%, 23% are SS-AD. Biogas results were measured using the water displacement method every two days to determine daily production. The results showed that with the addition of NaOH the total volume of biogas obtained by L-AD method (TS 9%) and SS-AD (TS 23%) were 1254 ml and 1397 ml. Production of biogas per unit of TS for L-AD method is 46,44 ml / grTS and for SS-AD is 20,246 ml / grts, while biogas production per reactor volume unit for L-AD method is 6,26 ml / ml reactor and for SS-AD method is 4.64 ml / ml reactor. The kinetics constant of biogas production with L-AD method obtained A, U, and λ respectively were 50,53 ml / grTS, 1.23ml / grTS.day, 11,71 day, while for SS-AD method obtained A, U , and λ respectively 21.07 ml / grTS, 0.6 ml / grTS.day, 6.2 days.


2018 ◽  
Vol 34 (3) ◽  
pp. 1278-1282 ◽  
Author(s):  
Bambang Trisakti ◽  
Fatimah Batubara ◽  
Hiroyuki Daimon ◽  
Irvan .

This paper reports the minimum requirements of nickel and cobalt as trace metals in the formation of biogas from the digestion of palm oil mill effluent (POME). Anaerobic digestion was conducted in a two-liter continuous stirred tank reactor (CSTR) and operated at a thermophilic condition of 55oC. As raw material, a non-treated liquid waste from the mills was used. Hydraulic retention time (HRT) of the digesters was preserved at six days. The results come to the conclusion that the decrease of trace metals concentration didn’t influence the total solid, volatile solid concentration and also M-alkalinity. Based on the analyzed parameter, the reduction of trace metals concentration up to 97% of the initial nickel and cobalt concentration, 0.49 and 0.42 mg/L for nickel and cobalt, still allows the fermentation to obtain optimum biogas production, where the 90% reduction of trace metals produced the average volume of biogas 10.5 L/day at the rate of VS degradation 52-53%.


Author(s):  
Adelyna Oktavia ◽  
Kurnia Sembiring ◽  
Slamet Priyono

Hospho-material of olivine, LiMnPO4 identified as promising for cathode material generation next Lithium-ion battery and has been successfully synthesized by solid-state method with Li2Co3, 2MnO2, 2NH4H2PO4 as raw material. The influence of initial concentration of precursors at kalsinasi temperatures (400-800 ° C) flows with nitrogen. The purity and composition phase verified by x-ray diffraction analysis (XRD), scanning electron microscopy (SEM), spectroscopy, energy Dispersive x-ray Analysis (EDS), Raman spectra. General investigation shows that there is a correlation between the concentration of precursors, the temperature and the temperature of sintering kalsinasi that can be exploited to design lithium-ion next generation.


2018 ◽  
Vol 31 ◽  
pp. 02007 ◽  
Author(s):  
Hashfi Hawali Abdul Matin ◽  
Hadiyanto

An effort to obtain alternative energy is still interesting subject to be studied, especially production of biogas from agriculture waste. This paper was an overview of the latest development of biogas researches from rice husk waste by Solid State Anaerobic Digestion (SSAD). The main obstacle of biogas production from rice husk waste was the lignin content which is very difficult degraded by microbes. Various pretreatments have been conducted, either physically, chemically as well as biologically. The SSAD method was an attractive option because of the low water content of rice husk waste. The biogas yield by SSAD method gave more attractive result compared to Liquid Anaerobic Digestion (LAD) method. Various studies were still conducted in batch mode laboratory scale and also has not found optimum operating conditions. Research on a larger scale such as bench and pilot scale with continuous systems will be an increase trend in the future research.


2018 ◽  
Vol 14 (2) ◽  
pp. 7-15 ◽  
Author(s):  
Yuri Yevdokimov ◽  
Olena Chygryn ◽  
Tetyana Pimonenko ◽  
Oleksii Lyulyov

The paper deals with analysis of the preconditions of alternative energy market development in Ukraine. In this case study, the authors analyzed the EU experience. The results of analysis showed that the leader of the EU countries in renewable energy has already achieved the target (20%), which had been indicated. In addition, the findings showed that the share of renewable energy in gross final energy consumption has been increasing from year to year. The authors allocate that, according to the Ukrainian potential, biogas is the most perspective one among alternative resources. Moreover, results of analysis showed that Ukraine has the huge potential of agricultural sector. In this direction, the authors allocated the main types of the agricultural activities, which have the highest potential of biogas production: sugar factories, corn silage and poultry farms. The authors underlined that biogas spreading is restrained by the stereotypes that green investments are not attractive for investors. In order to analyze the economic efficiency of investments to the biogas installation, the authors calculated the profit from the biogas installation for poultry farm. The authors made two scenarios for calculation. The first – the whole volume of energy, which was generated from the biogas unit, will be sold with feed-in tariff. The second – the farm covers its own needs in electricity, the rest will be sold with feed-in tariff. The findings showed that the first scenario is more attractive. Moreover, the farm could receive higher profit if it installed the biogas in 2016, not in 2017. In addition, based on the EU experience and features of farm functioning, the authors approved that the biogas installation has not only the economic effect (profit and additional profit) for company, but also ecological and social effects for rural area, where this farm was located.


2020 ◽  
Vol 181 ◽  
pp. 01006
Author(s):  
Ambar Pertiwiningrum ◽  
Ratih Kusuma Wardani ◽  
Joko Wintoko ◽  
Rachmawan Budiarto ◽  
Margaretha Arnita Wuri ◽  
...  

The energy needs in Indonesia are mainly fulfilled by fossil fuels based energy. Since there is the rise of fuel price, Indonesia government considers seeking alternative energies from renewable resources. Biogas becomes one of the alternative energy that supplies energy needs and manages cow manure waste in Indonesia. To increase adoption of biogas technology, biogas production through methane enrichment is required. The experiment was conducted with return sludge system. These instruments consist of a series portable bio-digester, gas holder and return sludge unit. There were three treatments on biogas production without and with sludge addition or re-use bio-digester sludge that produced after biogas production as raw material for next biogas production. Biogas that produced was observed every two days during 40 days. The results showed that the addition of bio-digester sludge increased biogas production and methane concentration. The optimum retention time of biogas production with sludge addition was 20 days with accumulation biogas volume of 156.38 liters or increased of 38.75 from biogas production without bio-digester sludge). The optimum retention time to increase methane level was 15 days with methane enrichment from 0.8% to 29.41%.


2015 ◽  
Vol 79 ◽  
pp. 838-844 ◽  
Author(s):  
Srisuda Chaikitkaew ◽  
Prawit Kongjan ◽  
Sompong O-Thong

Author(s):  
Benard Obuya ◽  
Sebastian Waita ◽  
Calford Otieno

Bananas are the main source of stable food among the Kisii people in Kenya. Apart from the banana fruit, the other parts are usually thrown to waste although can be used in a useful manner like to generate biogas. This research sought to investigate biogas production potential from different parts of a banana plant in Kisii County, Kenya. In the study, 2 kg of banana leaves, pseudo-stem, fruit bunch stalk (FBS) and peels were collected as feed-stocks for a laboratory-scale anaerobic digester to produce biogas. The experiment was carried out in a multi-stage anaerobic digestion system operated under mesophilic temperature (30-35°C). Various process parameters were measured including total solid, volatile solid and volume of biogas produced. After completion of 21-day digestion at an average temperature of 33°C, specific Biogas yields reached were about 16.5 litres/kg (leaves), 13.5 litres/kg (pseudo-stem), 12.7 litres/kg (fruit bunch stalk) and 15.1 litres/kg (peels). The optimum daily production of biogas was between the 13th-15th day. Cumulatively, it was observed that after the 15th day, almost all of the biogas had been released from the digester. By doing a simple computation based on energy calculation, it was found that 61% of the energy expected from a similar quantity by other researchers. The study showed that banana leaves have highest potential for biogas as compared to the other parts.


2021 ◽  
Vol 56 (4) ◽  
pp. 630-642
Author(s):  
Reginaldo Alves De Souza ◽  
Marília Regina Costa Castro Lyra ◽  
Renata Maria Caminha M. de O. Carvalho ◽  
José Coelho de Araújo Filho

The use of biogas as an alternative to using liquefied petroleum gas (LPG) for cooking food in the context of family farming is something recent and has ample room for growth. The aim of this study was to evaluate the use of the Sertanejo biodigester by farming families as a social technology for cooking gas production, as well as an alternative energy source. It also aimed to identify elements which contribute to disseminating this technology as an alternative to the use of firewood, charcoal and LPG. Quali-quantitative approaches were used following the exploratory method, with interviews and non-probabilistic sampling. A population with 132 units of biodigesters in the Agreste mesoregion of the State of Pernambuco was considered, with 83 interviews being collected. The results indicated that the Sertanejo biodigester social technology provides an increase in the income of farming families, avoids the use of firewood and charcoal for cooking food and produces biofertilizer for crops. They also showed that its non-continuous use or deactivation is related to a lack of raw material and the need for maintenance. Given this scenario, its implementation must consider the availability of a raw material source in the production unit and the potential for biogas production from the existing herd and consumption demand. It is recommended to strengthen arguments of economic and environmental impact for low-income families to disseminate this technology; to encourage the use of biogas associated with other activities in the production system; and to incorporate biodigestor social technology in rural credit financing lines.


Sign in / Sign up

Export Citation Format

Share Document