Chemical-Demulsifier Development Based on Critical-Electric-Field Measurements

SPE Journal ◽  
2008 ◽  
Vol 13 (03) ◽  
pp. 346-353 ◽  
Author(s):  
Jan H. Beetge ◽  
Bruce Horne

Summary Resolution of water-and-oil emulsions is critical to the oilfield industry. A wide variety of undesirable emulsions are formed during the production, handling, and processing of crude oil. Although various methods are used, dehydration of crude oils is achieved mostly by gravitational sedimentation, normally at elevated temperatures and with the addition of chemical demulsifiers. The quantitative evaluation of emulsion stability by a critical-electric-field (CEF) technique was developed to play a significant role in chemical-demulsifier research. It was found that the CEF technique is useful not only in the evaluation of water-in-oil-emulsion stability, but also in studying the mechanisms of stabilization and demulsification. A method was developed to study the mechanism of emulsion stabilization in terms of flocculation and coalescence behavior of a crude-oil emulsion. The effect of chemical demulsifiers on emulsion stability was evaluated in terms of the method developed in this study. By following this approach, it is possible to determine the relative amount of energy required for both flocculation and coalescence in the presence of a chemical demulsifier. Introduction The inevitable creation and subsequent resolution of water-in-oil emulsions during the production and processing of crude oils are of significant importance in the oilfield industry. These emulsions, which typically could be any combination of water-in-oil, oil-in-water, or complex emulsions, are diverse in their nature and stability. The majority of oilfield emulsions are resolved by the application of chemical demulsifiers in special processes under specific conditions. The stability of crude-oil emulsions is influenced by many variables; therefore, and chemical demulsifiers are developed specifically for each application to achieve optimum economic efficiency. Emulsion stability of water-in-oil emulsions encountered in the oilfield industry can be evaluated with various methods (e.g., determining droplet size and distribution, determining the amount of water resolved as a second phase, analyzing moisture of the oil phase, and more-sophisticated methods such as interfacial rheology). Sullivan et al. (2004) suggested the use of CEF as a method to provide information for stability-correlation development. Commercial separation of a dispersed aqueous phase from typical crude oil by electrostatic methods is well-known and dates to the early 20th century (Cottrell 1911; Cottrell and Speed 1911). Electrostatic dehydration technology is still being developed and refined to play an important role in challenging oilfield applications (Warren 2002). The use of CEF, as a method to evaluate water-in-oil-emulsion stability, has been developed recently by Kilpatrick et al. (2001). In their CEF technique, a sample of water-in-oil emulsion is injected between two parallel electrode plates. A direct-current voltage is applied between the two electrodes and is increased in incremental steps, with continuous monitoring of the conductivity or the amount of electrical current through the oil sample. Fig. 1 shows a simple diagram of the CEF technique. In response to the increasing applied electric field, the water droplets tend to align themselves to form agglomerated columns of droplets, which form a conducting bridge once a critical voltage (or electric field) has been reached. The strength of the electric field at which the sample shows a sharp increase in conductivity (increase in current through sample, between the two electrode plates) is recorded as the CEF. By this method, relative emulsion stability is compared quantitatively in terms of the CEF value and expressed in units of kV cm-1. In contrast to the method of Sjöblom, we have used alternating current with parallel-plate electrodes at the tip of a probe, which was submerged in the hydrocarbon medium. Comparison of crude-oil emulsions by CEF techniques is well-documented (Sullivan et al. 2004; Aske et al. 2002), but no reference to the use of CEF in chemical-demulsifier development could be found. It is the purpose of this study to develop the CEF technique for application in chemical-demulsifier research.

REAKTOR ◽  
2017 ◽  
Vol 6 (1) ◽  
pp. 29
Author(s):  
B. Pramudono ◽  
H. B. Mat

The stability of water-in-oil emulsion of some Malaysian crude oils was studied with particular emphasis on effect of interfacial active components existed in the crude oil, i.e. asphaltene, resin and wax. The emulsion stability was studied by measuring the volume of water or oil phase separated in variation with time, water hold up, and the heights of the sedimenting/coalescing interfaces during the separation at various temperatures. The study investigated the influence of asphaltene, resin and wax on emultion stability if it`s present in the crude oil alone, together or combination one of the others. The result show that the interfacial active component that stabilize emulsion is asphaltene. The resin and wax  do not form stale emulsion either aloneor together. There is a correlation between emulsion stability and physicochemical properties of crude oil which showed that higher asphaltene content in the crude oil would form more stable emultion. Increased temperature was found to cause instability of emultion. Keywords : emultion stability, crude oil, asphaltene, resin and wax


1987 ◽  
Vol 1987 (1) ◽  
pp. 293-296 ◽  
Author(s):  
Gerard P. Canevari

ABSTRACT Previous research has shown that crude oils contain various amounts of indigenous surface active agents that stabilize water-in-oil emulsions. It is also known that crude oils stabilize such emulsions to different extents. One aspect of the study was to investigate the relationship between the emulsion forming tendency of the various crude oils and the level of performance of a chemical dispersant on the particular crude oil. The results of the extensive laboratory test program indicated that dispersant effectiveness is a function of both dispersant type and the specific crude oil. However, there is no apparent correlation between the degree of emulsion-forming tendency of the crude oil, which is a function of the indigenous surfactant content, and effectiveness. A “clean” hydrocarbon, tetradecane (C14), was also tested in order to evaluate the absence of any indigenous surfactants on performance. It was found that tetradecane exhibited a higher level of effectiveness compared to the crude oils for each of the dispersants tested. In essence, the indigenous surfactants in the crude oil, in every instance, reduce dispersant effectiveness but to an unpredictable level. This is probably due to the fact that these agents present in crude oil promote a water-in-oil emulsion. Since the chemical dispersant is formulated to produce an oil-in-water dispersion, the interference of these crude oil surfactants is apparent. Hence, tetradecane would be an ideal test oil since the degree of dispersion of tetradecane by a particular dispersant represents the maximum dispersion effectiveness for that product. In order to establish more definitively the role of the indigenous surfactants, this surfactant phase was successfully separated from nine crude oils representative of different emulsion forming tendencies. It was found that the amount of surfactant residue extracted from the crude oil did correlate with the emulsion forming tendency of the crude oil. Finally, the above separated surfactant residue was added to tetradecane at the same concentrations as in the respective crude oil. As expected, in every instance, the surfactant residue decreased dispersant performance compared to “pure” tetradecane.


1995 ◽  
Vol 1995 (1) ◽  
pp. 435-422 ◽  
Author(s):  
Tsutomu Tsukihara

ABSTRACT Crude oil spilled in the sea is mixed with the sea water by the wind and waves resulting in increases in its water content and viscosity as time passes. We have constructed a small, transfer type circulating water channel of an elliptical cuit-track form. Using an attached circulating unit, together with a war tunnel, artificial waves are generated to enable simulation corresponding to the natural circumstances in the sea. The experiment disclosed the following results.Drastic changes in the properties (water content and viscosity) of the oil depend on the power of waves.Contrasting processes are observed between heavy and light crude oils during weathering.Heavy crude oils form a massive water-in-oil emulsion (mousse) with increases in both water content and viscosity.Light crude oils behave differently at summer sea temperatures,


2020 ◽  
Vol 10 (4) ◽  
pp. 69-84
Author(s):  
Dr. Mueyyed Akram Arslan ◽  
Dr. Ghassan Burhan Yaqoob

In this study oil-soluble (RP6000 and MAKS-9150) emulsion breakers have been selected for separation of water from Kirkuk / baba (50oC), Khbbaz (40oC) crude oil emulsions and their activity measured using the Bottle test method at different concentration and found the activity of RP6000 demulsified best than MAKS-9150 emulsion breakers. RP6000 separated water (100%) in (15)min., (40)ppm and in (60)min., (20)ppm of demulsified for Kirkuk/ baba Crude oil and for khbbaz Crude oil the (100%) water separation was in (15)min., (80)ppm and in (30)min., (60)ppm and PH effect, salinity, temperature and density of emulsion stability depending on literature were explained for Optimization.


2015 ◽  
Vol 29 (6) ◽  
pp. 3616-3625 ◽  
Author(s):  
Daniel P. Cherney ◽  
Chunping Wu ◽  
Rachel M. Thorman ◽  
Jessica L. Hegner ◽  
Mohsen S. Yeganeh ◽  
...  

Author(s):  
А.И. Муллаянов ◽  
Р.Ш. Осипова ◽  
А.А. Мусин ◽  
Л.А. Ковалева

The behavior of a water-in-oil emulsion stabilized with asphaltenes under the action of an inhomogeneous alternating electric field has been studied. The experimental technique is based on the use of microfluidics, optical microscopy, and high-speed video filming. Quantitative estimates of the parameters characterizing the dynamics of the destruction of the emulsion, depending on the frequency and amplitude of the applied field, are obtained. The method will be useful in the development of effective methods for breaking emulsions and modifying existing technologies for separating oil emulsions into phases.


2015 ◽  
Vol 55 (2) ◽  
pp. 416
Author(s):  
Zachary Aman ◽  
William G.T. Syddall ◽  
Paul Pickering ◽  
Michael Johns ◽  
Eric F. May

The severe operating pressures and distances of deepwater tiebacks increase the risk of hydrate blockage during transient operations such as shut-in and restart. In many cases, complete hydrate avoidance through chemical management may be cost prohibitive, particularly late in a field’s life. For a unique subclass of crude oils, however that have not been observed to form a hydrate blockage during restart, active hydrate prevention may be unnecessary. In the past 20 years, limited information has been reported about the chemical or physical mechanisms that enable this particular non-plugging behaviour. This extended abstract demonstrates a systematic method of characterising this oil, including: physical property analysis that includes and builds upon ASTM standards; water-in-oil emulsion behaviour; and, the effect of oil on hydrate blockage formation mechanics. This last set of experiments uses a sapphire autoclave to allow direct observation of hydrate aggregation and deposition, combined with resistance-to-flow measurements. The effect of shut-ins and restarts on the oil’s plugging tendency is also studied in these experiments. The method was tested with several Australian crude oils, some of which exhibited non-plugging behaviour. In general, these particular crude oils do not form stable water-in-oil emulsions but do form stable non-agglomerating hydrate-in-oil dispersions. The oils suppress hydrate formation rates and their resistance-to-flow does not increase significantly when the amount of hydrate present would normally form a plug.


Author(s):  
N. H. Abdurahman ◽  
H. A. Magdib

The purpose of this research is to look into the formulation and evaluation of concentrated water-in-oil (W/O) emulsions stabilized by UMP NS-19-02 surfactant and their application for crude oil emulsion stabilization using gummy Malaysian crude oil. A two-petroleum oil from Malaysia oil refinery, i.e., Tapis petroleum oil and Tapis- Mesilla blend, were utilized to make water-in-oil emulsions. The various factors influencing emulsion characteristics and stability were evaluated. It was discovered that the stability of the water-in-oil emulsion improved by UMP NS-19-02 improved as the surfactant content rises, resulting in the decline of the crude oil-water interfacial tension (IFT). Nevertheless, the most optimum formulation of W/O emulsion was a 50:50 W/O ratio with 1.0% surfactant. Additionally, raising the oil content, salt concentration, duration and mixing speed, and pH of the emulsion resulted in higher emulsion stability. It also raised the temperature of the initial mixing, which significantly decreased the formulated emulsions' viscosity. The results showed that stable emulsions could be formed using the UMP NS-19-02 surfactant.


Sign in / Sign up

Export Citation Format

Share Document